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Chapter 1

Introduction

Tree segmentation can be utilized to solve many different challenges in geoinfor-

matics, but one of the most important may be analyzing the changes in the area

covered by vegetation. Change detection plays an important role in addressing envi-

ronmental challenges that influence urban life and planning. Urban expansion and

industrialization have significant impacts on the area covered by vegetation, thus ne-

cessitating continuous monitoring and analysis to ensure optimal values. This study

focuses on advancing the efficiency of 2D-based tree segmentation by integrating 3D

point cloud data, specifically leveraging the AHN3 point clouds.

The existing methodologies for change detection and land cover classification,

are often reliant on multispectral satellite imagery and aerial photography and face

limitations, particularly when applied to larger urban and suburban areas. LiDAR,

although a less widespread alternative due to cost and availability constraints, offers

a unique advantage by generating 3D point clouds. However, the comparison of

such point clouds from different epochs presents algorithmic challenges, including

variations in point density and spatial location.

This research addresses these challenges by investigating the causes of false pos-

itives in the currently used method in the CloudTools [1] geospatial framework,

developed at Eötvös Loránd University. An initial attempt using a morphological

operation-based approach was deemed unsuitable. Subsequently, a moving window

method was developed, leveraging both 2D data to find false positives in the result.

Moving beyond, this study explores the integration of 3D point cloud data into

the segmentation process. This involves researching and implementing various tech-

niques, including the utilization of pre-trained neural networks. The objective is to

3



1. Introduction

enhance the accuracy of tree segmentation by making use of the additional informa-

tion provided by the 3D data, thus mitigating false positives.

A significant contribution of this work is the application and comparison of

pre-trained neural networks for segmenting point cloud data. This step involves an

evaluation of the performance of these neural networks in detecting and classifying

trees, with a particular focus on their ability to reduce false positives. The integration

of advanced machine learning techniques aims to further refine the accuracy and

efficiency of the segmentation process.

By combining insights from 2D-based and 3D-based methods and incorporating

machine learning approaches, this research not only identifies the limitations of cur-

rent methodologies but also offers a potential solution for addressing false positives

in large-scale tree segmentation in urban environments. The findings contribute not

only to the improvement of existing techniques but also to the broader understanding

of automated processing for diverse and expansive urban and suburban landscapes.

The structure of the thesis is organized in the following way. Chapter 2 is an

overview of the LiDAR technology, its use cases, and related research regarding

current tree detection methods. Chapter 3 describes the methodology for assessing

the problem of tree detection and the different insights gained while conducting

experiments. Chapter 4 describes how the different approaches were implemented.

In Chapter 5 the achieved results are presented. Finally, in Chapter 6 I summarize

my work.
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Chapter 2

Related work

Light Detection and Ranging (LiDAR) has emerged as a revolutionary active re-

mote sensing technology, transforming the way we measure distances between sensors

and target surfaces. Pioneered in the 1960s, LiDAR gained significance for its role in

mapping the Moon during space exploration. Referred to as laser scanning, LiDAR

is capable of utilizing diverse light types, including ultraviolet, near-infrared, and

visible light. Its applications span across disciplines, from geodesy and geography to

autonomous driving, establishing itself as a pivotal tool in high-resolution mapping.

2.1 Data acquisition

The utilization of LiDAR broadly falls into two primary categories: airborne and

terrestrial, selected based on considerations such as data objectives, target dimen-

sions, and detection costs.

2.1.1 Airborne LiDAR

Airborne Laser Scanning (ALS) employs sensors attached to flying aircraft, craft-

ing a 3D point cloud model of the target area. ALS can be of two main types, one

is the multispectral full waveform, which captures the complete backscattered sig-

nal, enabling detailed characterization of complex vegetation and terrain structures,

and the other is the discrete return, which acquires individual reflection points, op-

timizing ground mapping and elevation modeling precision in topographic studies.

Scanning, typically perpendicular to the flight direction, excels in differentiating and

filtering vegetation, contributing significantly to studies focused on non-vegetation

5



2. Related work

object filtration. Recent advancements have not only enhanced the technology but

also contributed to a notable reduction in hardware costs, making ALS more acces-

sible for various applications across industries.

Figure 2.1: Types of Airborne Laser Scanning (ALS) [2]

2.1.2 Terrestrial LiDAR

Terrestrial Laser Scanning (TLS) is realized with sensors positioned on the

Earth’s surface. Stationary TLS gathers data from a fixed point, aligning point

clouds with 2D images to construct realistic 3D models. It finds extensive use in

surveying, particularly in construction settings where precise measurements are crit-

ical.

Mobile Terrestrial Laser Scanning (MTS) is when sensors are placed on mov-

ing vehicles for 3D modeling, which can be used to provide the necessary data for

autonomous driving systems about the surrounding environment.
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ALS encompasses multispectral full-waveform and discrete return LiDAR.

Multispectral lidar captures laser pulses across multiple spectral bands, acquiring

detailed waveform data for each pulse. This allows for spectral decomposition and

comprehensive analysis of surface features and vegetation structure.

In contrast, discrete return LiDAR records specific points of reflection, emphasiz-

ing the precise timing of laser pulse returns. This approach is tailored for accurate

elevation modeling and ground mapping, as it directly measures the distance be-

tween the sensor and the reflecting surface at distinct points.

2.2 Data formats and types in LiDAR processing

LiDAR technology generates voluminous data, necessitating efficient storage and

processing formats. Various file formats cater to specific needs, encompassing Digital

Elevation Models (DEM), Digital Surface Models (DSM), LAS, and PCL files.

2.2.1 Digital Elevation Model

An invaluable asset in using LiDAR data for geoprocessing, Digital Elevation

Models (DEM) represent a 3D representation of the Earth’s surface, capturing ele-

vations at discrete points. This raster format is often stored in GeoTIFF or ASCII

and provides a bare-earth model, essential for terrain analysis, hydrology, and land-

form characterization, also it plays an important role in topographic studies.

2.2.2 Digital Surface Model

Digital Surface Models (DSM) are a form of DEM that incorporates surface

features such as buildings, vegetation, and infrastructure. Capturing both natural

and man-made elements, DSMs provide a comprehensive representation of above-

ground structures. DSMs are often stored in raster formats like GeoTIFF, facilitating

analyses in urban planning, forestry, and infrastructure development.

2.2.3 Digital Terrain Model

Digital Terrain Models (DTM) represent the bare-earth surface by removing the

above-ground features such as buildings, vegetation, and other structures, providing

a detailed representation of the ground topography.
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Figure 2.2: Types of Digital Elevation models [3]

2.2.4 LAS format

LAS files represent a standardized binary format for storing LiDAR point cloud

data. Developed by the American Society for Photogrammetry and Remote Sensing

(ASPRS), LAS files efficiently store millions of LiDAR points with attributes like

X, Y, and Z coordinates, intensity, and classification. LAS format facilitates in-

teroperability among different LiDAR processing software. It supports point cloud

manipulation, enabling tasks such as filtering, classification, and feature extraction.

2.2.5 LASzip compression

LASzip compression (LAZ) is commonly employed to mitigate the challenges of

large LAS files. LAZ reduces file sizes without compromising data integrity, enhanc-

ing storage efficiency and speeding up data transfer. LAZ retains the LAS structure,

ensuring compatibility with LAS-supported software. It serves as a practical solution

for managing extensive LiDAR datasets, especially when storage and bandwidth are

limiting factors.
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2.2.6 Point Cloud Library format

PCL files serve as a versatile format within the Point Cloud Library, an open-

source project dedicated to 2D and 3D image processing. PCL files encapsulate point

cloud data, supporting various data structures and algorithms for LiDAR processing.

2.3 Dataset

The AHN (Actueel Hoogtebestand Nederland) dataset is integral to our urban

LiDAR research, providing a detailed view of the topography in urban areas across

the Netherlands. Managed by the Dutch National Mapping Agency (PDOK), specif-

ically AHN3, it serves as a critical resource for our scientific investigation.

Utilizing aerial LiDAR scanning, AHN delivers a detailed depiction of the Dutch

urban landscape, offering essential elevation information for geospatial analysis, ur-

ban planning, and environmental monitoring.

AHN has a point density of 6-10 points/m2 through airborne LiDAR scanning.

This is lower than the point densities used in current urban segmentation models

(typically 1000 to 2000 points/m2). The dataset also has a random error of up to

15 cm. The lower point density poses a challenge, necessitating the exploration of

upscaling methods to align with current urban segmentation model requirements.

As we address these challenges, the AHN dataset remains crucial for refining and

enhancing our approaches for efficient and accurate tree segmentation.

In the subsequent section, I will discuss methodologies used to extract meaningful

insights from point clouds and DEMs.

2.4 Tree detection

Tree detection can be accomplished by many different methods, but the main

differentiating factor is the type of data used. One is the approach based on Canopy

Height Models which is calculated by subtracting the DTM From a DSM thus getting

a good approximation of the trees’ locations and heights, methods using CHM are

usually fast because the data is 2D, and the size and complexity of the data on

which the algorithms are relatively small.

The other method uses raw Lidar Data obtained by terrestrial or aerial scanning,

these methods have much more data available, having the potential to produce much
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more accurate results, but the drawback is that the processing algorithms are much

more complex, and the runtimes are much larger since the size of the lidar data is

much more complex and voluptuous than 2D data. In the following section, I will

present different existing variants of these methods and discuss their potential to be

used for accomplishing this study’s goal, to reliably discern trees from other objects

in an urban environment.

2.4.1 CHM-based approaches

One widely adopted method in the realm of Canopy Height Models (CHMs) in-

volves the local maxima technique, as detailed by Koch et al. [4]. In their study, the

authors leverage laser scanning data to automatically delineate individual trees in

deciduous and mixed temperate forests. The workflow includes the application of a

local maximum filter to identify possible treetops in rasterized laser data. Following

this, tree crowns are delineated through a combination of a pouring algorithm,

knowledge-based assumptions on tree shapes, and final detection of crown edges

by searching vectors starting from the treetops. However, it’s essential to note that

while the segmentation algorithm performs well for coniferous stands, challenges

arise in dense stands of deciduous trees, where crown merging tendencies become

more prominent.

Another noteworthy CHM-based approach is the watershed-based method, ini-

tially proposed by Beucher and Lantuéjoul in 1979 [5]. This method, rooted in con-

tour detection, identifies edges in an image and fills basins or minimums, creating

distinct segments that represent potential tree locations [6]. Yang et al. (2020) adapt

the watershed algorithm for individual tree segmentation using airborne LiDAR

point clouds. The method combines the watershed algorithm with three-dimensional

spatial distribution analysis to achieve the delineation of individual trees.

Morphological operations, were first used for tree detection by Andersen et al.

[7], their workflow involved opening and closing operations to refine the separa-

tion and outline of potential trees. In their work, they applied these operations to

a LIDAR-based canopy surface model, leading to a clearer separation and more

accurate outlines of potential trees.

The curvature-based method, utilizing a Gaussian filter based on dominant scales

of tree crowns [8], represents another avenue for tree identification. This method en-
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hances precision through scale-aware filtering, wherein the curvature of the point

cloud is utilized to identify potential tree locations. Subsequently, a Gaussian fil-

ter is applied to refine segmentation, resulting in improved accuracy in delineating

individual trees [8].

A relatively novel approach involves the use of Full-Waveform Airborne Laser

Scanning (FW-ALS) data, specifically for urban tree classification [9, 10]. This

method incorporates the entire waveform of the laser pulse, allowing for detailed

characterization and classification of urban vegetation. Koma et al. (2016) utilize

full-waveform airborne LiDAR data for object-based classification of urban trees at

the taxonomic family level, showcasing the potential of this approach in complex

urban environments.

2.4.2 Point cloud-based approaches

Point cloud-based algorithms encompass diverse strategies for tree detection. The

top-to-bottom method excels in coniferous forests but faces diminished accuracy in

broadleaf forests due to asymmetric and random growth patterns [11]. Lu et al.

(2014) introduce a bottom-up method based on the intensity and 3D structure of

leaf-off LiDAR point cloud data. This method demonstrates greater effectiveness in

deciduous broadleaf forests, offering a nuanced approach to tree segmentation based

on the intensity and three-dimensional structure of the point cloud data [12].

Density-based algorithms, such as the approach by Rahman and Gorte [13], rely

on individual tree detection based on high point densities, the authors implement a

density-based algorithm using the densities of high points in high-resolution airborne

LiDAR, showcasing effectiveness in detecting individual trees across diverse forest

environments. The emphasis lies on leveraging point density patterns to identify

potential tree locations, contributing to a robust approach for tree segmentation.

Clustering algorithms play a crucial role in point cloud-based approaches. Ferraz

et al.[14] employ the mean shift algorithm for the unsupervised segmentation of

multi-layered Mediterranean forests. Utilizing ALS data and mean shift clustering,

the study provides a robust approach for characterizing different vegetation layers.

The mean shift clustering aids in identifying distinct segments within the point

cloud, offering valuable insights for forest mapping and fuel estimation.

Multispectral LiDAR data has opened new possibilities for individual tree ex-
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traction. Dai et al.[15] investigate the performance of multispectral ALS data for

delineating individual trees. Their workflow incorporates mean shift segmentation

on different feature spaces, showcasing improved accuracy, especially in dealing with

clumped tree segments in dense forests. By integrating multispectral information,

the study introduces a nuanced approach to individual tree delineation, considering

both geometric and radiometric features.

Maltamo et al.[16] explore the potential of laser scanner data for identifying

and quantifying structural characteristics of heterogeneous boreal forests. The study

focuses on discrete return laser scanner data, analyzing the height distributions of

reflected laser pulses to recognize multi-layered stand structures using a histogram-

based thresholding method to quantify understory trees.

2.4.3 Neural Network-based Approaches

Recent advancements in point cloud processing have witnessed the emergence

of powerful neural network-based methods, showcasing impressive capabilities in

semantic segmentation and classification.

Efficiently designed for semantic segmentation of large-scale point clouds,

RandLA-Net by Hu et al. [17] leverages both local and global geometric context,

achieving good results in semantic segmentation tasks while demonstrating efficiency

and scalability in handling extensive point cloud datasets.

Introducing a flexible convolution for point clouds, KPConv by Thomas et al. [18]

enhances the accuracy of previous convolutional neural networks. This adaptability

to local structures allows for improved feature extraction and semantic segmentation

in large-scale point clouds.

Some of the datasets on which the mentioned neural networks were trained for

usage in 3D Segmentation in urban settings will be presented next.

The Paris-Lille-3D dataset [19], presented by Xavier Roynard et al., is a sub-

stantial urban point cloud dataset for automatic segmentation and classification.

Acquired with the Mobile Laser Scanning (MLS) prototype L3D2, this dataset in-

cludes two parts, one in the agglomeration of Lille and one in Paris. The dataset

provides 143.1 million points distributed over 1,940 meters, featuring a point den-

sity of 1000-2000 points/m2, offering a relatively accurate representation of urban

environments for segmentation and classification tasks.
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The SemanticKITTI Dataset [20] serves as a benchmark for evaluating algo-

rithms in semantic scene understanding, featuring 23,201 full 3D scans for train-

ing and 20,351 for testing. Based on the odometry dataset of the KITTI Vision

Benchmark, it stands as the largest publicly available dataset for semantic segmen-

tation in point clouds, providing rich semantic annotations for LiDAR sequences

across diverse urban scenes.
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Chapter 3

Methodology

The primary challenge addressed in this methodology revolves around the is-

sue of false positives partly stemming from imperfect overlap between the Digital

Terrain Model (DTM) and the Digital Surface Model (DSM). The discrepancy in

the alignment of these models results in building edges not being accurately removed

during the creation of the Canopy Height Map (CHM). Consequently, these inaccu-

rately identified building edges are then erroneously interpreted as tree crowns, to

mitigate this problem, three different approaches were examined.

Figure 3.1: Building edges that remained in the CHM causing false positive
detections
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3.1 Study area

The area on which the different proposed algorithms were tested is in the central

part of Amsterdam and has a size of 1.93 km squared. This area was chosen because

it contains many different types of landscapes, for example rivers, streets with and

without roadside vegetation, parks and buildings with different types of architecture,

also there is a publicly available validation dataset which contains all of the trees

situated near the main roads.

The point cloud of the area contains approximately 30 million points with an

average density of 6-10 points/m2.

Figure 3.2: Study area in the center of Amsterdam

3.2 CHM-based approach

The first method employs a 2D strategy based on a sliding window technique.

In this method, each potential tree seed, identified as a local maximum, undergoes

a filtering process. Specifically, points exceeding a predefined threshold or marked

as no data in the DTM are considered. The rationale is to count points around

the suggested tree seed that might resemble building structures. If a substantial

number of nearby points indicate a building-like structure, then the original seed
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point is excluded from the potential seed points, thus improving the accuracy of the

identification process and speeding up the upcoming steps in the workflow.

An additional layer of refinement is introduced by creating a river mask. This

mask provides a different version of the DTM, that serves the purpose of differenti-

ating rivers from buildings. Originally both rivers and buildings were represented as

no-data points in the DTM. The river mask contains a predefined value in the place

of nodata points, which ensures that rivers are not wrongly treated as buildings

during the filtering process.

The creation of the River Mask works the following way:

1. For each point in the DSM:

• If the DSM point lacks data and the corresponding DTM point has data,

assign it as nodata.

• If the DSM point lacks data, assign a predefined constant value.

• If the DTM has data, keep the value the same.

Figure 3.3: Original DTM

Then, in the next phase, the Seed Removal algorithm iterates through each

potential tree seed point and examines its local neighborhood in the DSM and the

newly created DTM to determine if it resembles a building structure. The key steps

are as follows:
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Figure 3.4: New DTM after running the River Mask algorithm

1. For each potential tree seed point in the DSM, identified as a local maximum:

• Define a window of a specified size around the seed point.

• Count the number of points within the window that lack data in the

DTM and have values above a predefined threshold.

• If the count exceeds a certain threshold, mark the seed point as likely

corresponding to a building and add its index to a removal list.

2. Remove the identified seed points from the list, ensuring that potential

building-related points are excluded from further consideration.

In summary, this 2D sliding window approach is the initial strategy employed to

address the challenges associated with false positives in the current workflow. The

methodology aims to enhance the precision of tree crown identification by system-

atically evaluating and filtering potential seed points.

17



3. Methodology

Figure 3.5: Area with many false positive seed points in central Amsterdam

Figure 3.6: Area after running the CHM-based filtering algorithm
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3.3 Density-based approach

The second method in our methodology transitions from the 2D sliding window

approach to a thorough analysis of the full 3D point cloud. In this density-based ap-

proach, the objective is to refine the identification process by examining the average

density function of trees within a segmented region around each seed point. The al-

gorithm, implemented using the PCL library, introduces a more nuanced evaluation,

focusing on trees’ overall shape and density characteristics.

This approach initiates the segmentation of the 3D space surrounding a potential

tree seed. The algorithm cuts out a region centered on the seed point and divides it

into horizontal bins.

Figure 3.7: Vertical histogram of the point cloud of a tree [21]

Once the horizontal cut is complete, the next step involves the calculation of the

average density function within the segmented region. Unlike the 2D method, which

primarily considers height information, this approach utilizes the entire 3D point
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cloud data. By aggregating information from all dimensions, the algorithm captures

a more comprehensive representation of the tree’s density characteristics.

With the average density function calculated, the algorithm proceeds to assess

the cosine similarity of the derived shape. This step evaluates how closely the average

shape of the tree aligns with an expected tree shape which was derived from the

validation dataset. A predefined threshold for the cosine similarity measure was set,

acting as a criterion for identifying false positives.

Finally, based on the cosine similarity assessment, the algorithm performs false-

positive removal. If the similarity measure falls below the established threshold,

indicating a significant deviation from expected tree shapes, the identified tree is

flagged as a false positive and subsequently removed from consideration.

As the trees used for the calculation of the model tree were of different species

and heights, the gained average representation wasn’t as accurate as needed. For this

reason, an alternative method was considered which uses a more simple approach,

specifically if the point density in the middle-top region is denser by a specific ratio

than the bottom part, it was considered a tree, otherwise, it was discarded.

In summary, the density-based approach leverages the entire 3D point cloud to

refine false-positive removal.

3.4 Neural network-based segmentation

The third method leverages state-of-the-art neural network architectures, specif-

ically KPConv and RandLA-Net were chosen to perform semantic segmentation on

the specific point clouds, because of their outstanding performance reached on 3D

Semantic Segmentation datasets [18]. We can see a comparison of the performance

of the most used neural networks in Figure 3.1, based on the table and the networks’

availability and ease of use, RandLA-Net, and KPConv(pytorch) was deemed the

most suitable.

To perform the segmentation, we adopt a two-step process. Initially, we extract

a 3D segment around the potential tree seed with an optional extra area included to

give more context to the networks. Subsequently, this segmented point cloud under-

goes semantic segmentation through KPConv and RandLA-Net. At first, RandlA-

Net was used which was trained on the SemanticKITTI dataset.
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Methods Scannet Sem3D S3DIS PL3D
Pointnet - - 41.1 -
Pointnet++ 33.9 - - -
SnapNet - 59.1 - -
SPLATNet 39.3 - - -
SegCloud - 61.3 48.9 -
RF MSSF - 62.7 49.8 56.3
Eff3DConv - - 51.8 -
TangentConv 43.8 - 52.6 -
MSDVN - 65.3 54.7 66.9
RSNet - - 56.5 -
FCPN 44.7 - - -
PointCNN 45.8 - 57.3 -
PCNN 49.8 - - -
SPGraph - 73.2 58.0 -
ParamConv - - 58.3 -
SubSparseCNN 72.5 - - -
RandLA-Net(torch) - 76.0 70.9 70
KPConv rigid 68.6 74.6 65.4 72.3
KPConv deform 68.4 73.1 67.1 75.9

Table 3.1: Performance comparison of various neural networks on different 3D
segmentation datasets (mIoU) [18, 17].

The analysis revealed many instances where the network misidentified points as

poles (black), particularly at specific height ranges, and also misclassified building

points as vegetation, which interferes severely with the process of classifying the

point clouds as trees or non-trees.

After further testing, it was concluded that the reason for misclassifying points at

specific heights was the specifics of the architecture of the RandlA-Net as when test-

ing with the KpConv neural the misclassification to the pole class was not present.

The reason for the error is most probably that the RandlA-Net network has a bias

towards the pole class at specific height intervals, thus another network had to be

chosen to improve the accuracy of the segmentation.
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Figure 3.8: Segmentation Results with RandlANet

For this reason, the next choice was the KpConv neural network, which promised

similar or better accuracy based on different 3D Segmentation datasets as seen in

Table 3.1. The results of the segmentation using KpConv were substantially better,

as the pole class was eliminated from the predictions, but the building facades were

still largely classified as vegetation, furthermore using the Paris-Lille-3D dataset

instead of the Semantic-Kitti increased the accuracy and the speed of the inference.

After further experimentation, it was concluded that the main factor causing the

misclassification of many points, was the large discrepancy between the dataset that

the network was trained on, and the dataset on which it was currently used, the

AHN3 containing 6-9 points/m2 and the Paris-Lille-3D which can contain close to

2000 points/m2.
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Figure 3.9: Segmentation Results with KpConv with no upscaling

To compensate for the low point density, an upsampling method was applied

using the PCL library. Specifically, the local plane of each input point was sampled

using a uniform random distribution such that the density of points was constant

throughout the point cloud.

With the application of upsampling, we increased the average point density from

6-9 to 50 points/m2. After running the segmentation process again, we can see a

visible improvement in the accuracy of the segmentation, namely the sides of the

buildings are starting to be classified correctly, but only partially.
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Figure 3.10: Segmentation Results with KpConv upscaled to 50 points/m2

To further improve the accuracy of the network, an even higher point density

was needed, so the density was increased to 100 points/m2. At this level we can see a

major improvement in the recognition of the building class, almost all of the points

in this scenario were correctly classified.
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Figure 3.11: Segmentation Results with KpConv upscaled to 100 points/m2

The area on which the networks were visually examined contained a typical

apartment house, which has flat sides and tops so that segmentation can be fairly

easily accomplished. However, the urban landscape of Amsterdam contains many

different shapes and types of buildings, which cannot be classified in such a manner.

Running the segmentation with the same upsampling factor on a more central

area in Amsterdam shows that when the point cloud is sparse because of occlusion

or other factors, the results deteriorate accordingly. Also when the shape of the

building tops is not flat but triangle-shaped, it causes the network to classify it as

vegetation.
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Figure 3.12: Segmentation Results with KpConv upscaled to 100 points/m2

Further increasing the density up to 1000 points/m2 seems to partially solve the

problem, but some of the building tops are still misclassified.

Figure 3.13: Segmentation Results with KpConv upscaled to 1000 points/m2
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From the previous experimentations, it was deduced that with a large enough

extra area for greater context and the application of upsampling to a density of

around 1000 points/m2, the segmentation results were suitable for use with ALS

point clouds. The gained segmentation results were forwarded to a post-processing

step which classifies the results into tree or non-tree, by using different thresholds

like the ratio or number of points classified as vegetation, buildings, or ground, this

will be discussed further in Chapter 5.4.
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Chapter 4

Implementation

The prototype implementations for the methodology described in Sec. 3.1 and 3.2

were carried out in standard C++ as part of the CloudTools geospatial framework.

CloudTools – developed at Eötvös Loránd University – aims to create an easily

reusable, high-abstraction level, an operation-based software library for raw point

cloud and DEM processing.

As DEM files (preprocessed from the original point cloud) were selected as the

input for the proposed algorithm, the CloudTools.DEM module was primarily uti-

lized in the framework. CloudTools.DEM depends on the GDAL/OGR geospatial

and geoprocessing software library for the input and output management of the

spatial data.

The CHM-based and the Density-based approach was implemented in

AHN.Vegetation. The neural network-based approach was implemented partly in

C++ and partly in Python, as the integration of the neural network into C++

proved to be unfeasible which will be discussed further in Section 4.4.

The implementation follows the design principles and architecture of the

CloudTools library. The UML class diagram shown in Figure 4.1 shows how the

implementation fits into the CloudTools library.

4.1 CHM-based approach

The Operation class serves as the base class of the other operation classes; it

defines a general transformation from an arbitrary data type to any other (Any →

Any). The processing of Digital Elevation Model (DEM) data sets is represented
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4. Implementation

by the Calculation class (DEM → Any). DatasetCalculation also inherits from

Calculation; here, the complete source datasets for the target area are read and

passed to the computation, which is then performed in a single call.

Figure 4.1: UML Diagram of the implementation of the CHM-based approach

The specific task of removing false positive seed points close to buildings is

encapsulated in the BuildingFacadeSeedRemoval class. This class, derived from

DatasetCalculation takes a vector of seed points, source paths, a progress callback,

and a threshold value as parameters during initialization.

The computation in the BuildingFacadeSeedRemoval class is a window-based

analysis, performed on the seed points to identify and remove those that are con-

sidered false positives. This is achieved by iterating through the seed points and

applying a specified threshold to determine their validity based on the surrounding

data as described in Section 3.1.

The full algorithm of the CHM-based approach can be seen below:
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Algorithm 1 Building Facade Seed Removal
1: procedure Initialize
2: computation← lambda function
3: Input: x, y, t, ws ▷ Window size = ws× 2 + 1, t=10, ws=3
4:
5: function computation(x, y)
6: idxs← empty vector
7: c← 0
8: for all point ∈ seedPoints do
9: counter ← 0

10: px← point.getX()
11: py ← point.getY()
12: for i← px− ws to px+ ws do
13: for j ← py − ws to py + ws do
14: if not hasSourceData(0, i, j) and sourceData(1, i, j) > t then
15: counter ← counter + 1
16: end if
17: end for
18: end for
19: if counter > threshold then
20: idxs.push_back(c)
21: end if
22: c← c+ 1
23: end for
24: for i← idxs.size()− 1 to 0 do
25: seedPoints.erase(seedPoints.begin() + idxs[i])
26: end for
27: end function
28: end procedure
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4.2 Density-based approach

The Density-based approach uses a histogram The vertical histogram of potential

trees is computed using the calcHist function. This function takes a vector of 3D

points and information about height and terrain then calculates a histogram with

21 bins representing the distribution of points in the vertical space.

The function iterates through the provided point, adjusts the height considering

terrain elevation, and updates the histogram accordingly. The resulting histogram

provides information about the vertical distribution of potential trees. The values

are then normalized to facilitate comparison.

After calculating the histograms we either filter out the ones that are below a

set similarity to the model histogram which was calculated based on the average

vertical density function of the trees from the validation dataset or remove the ones

that do not fall into a manually specified ratio.

The calcHist method used for calculating the vertical histogram can be seen

below:

Algorithm 2 Calculate Histogram
1: function calcHist(ids, points, height, terrain)
2: if height ≤ 1 then
3: return hist
4: end if
5: hist← vector of size 21 initialized with zeros
6: binSize← height/20
7: counter← 0
8: z, idx← 0, 0
9: for all i ∈ ids do

10: z← points[i][2]− (terrain + 0.5)
11: if z ≤ 0 then
12: continue
13: end if
14: idx← round(z/binSize)
15: if idx ≥ 0 and idx ≤ 20 then
16: counter← counter + 1
17: hist[idx]← hist[idx] + 1
18: end if
19: end for
20: return hist
21: end function
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4.3 Neural network based approach

The neural network based approach is implemented in such a way that when the

C++ workflow reaches the step where potential tree crowns are segmented in the

2D data, we cut out the minimal bounding box which still encompasses the crown.

When cut out, the areas are also optionally upscaled using the PCL library.

After upscaling the point clouds are written out into PCL format and then read

by the Python script. The Python script runs all the potential trees through the

selected network and classifies them into trees or non-trees based on the number

and ratio of the classified points.

Following the classification a binary vector of size equal to the potential trees is

written into a file which is then read by the C++ workflow, subsequently the points

that are deemed false are removed from further calculations.

4.4 Implementation Remarks

The initial plans for the implementation of the neural networks were to find a so-

lution that allows full integration into the existing software in C++. After thorough

research, it was concluded that there is no native C++ library that supports 3D

Detection and Segmentation, but there were some libraries that promised inference-

only solutions in C++ through ONNX 1 or TensorRT 2.

One such library was MMDeploy 3 which promised support for both TensorRT

and ONNX with popular 3D models with their own MMDetection3D 4 library, after

dedicating a substantial amount of time on manual compilation it became clear that

the given support for 3D model conversions is minimal in practice as the ONNX

conversion support wasn’t entirely finished. Compiling the library in such a way that

it allows 3D model conversions was also a considerable challenge, as many different

bugs were raised, thus a decision was made to search for a better alternative.

Another option was a more direct approach, converting the Pytorch 5 model to

TorchScript then compiling it with Torch-TensorRT 6, after making several attempts
1ONNX: https://onnx.ai/
2TensorRT: https://developer.nvidia.com/tensorrt
3MMDeploy: https://github.com/open-mmlab/mmdeploy
4MMDetection3D: https://github.com/open-mmlab/mmdetection3d
5Pytorch: https://pytorch.org/
6Torch-TensorRT: https://github.com/pytorch/TensorRT
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4. Implementation

of conversion with different architectures, it was unveiled that 3D model support was

lackluster.

Considering the above-discussed findings the integration of the models into C++

was dismissed and a Python-only implementation was chosen namely the OpenML 7

library, as it has support for the most accurate 3D models which are also optionally

pretrained.

7Open3DML: https://github.com/openml/OpenML
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Chapter 5

Results

Many of the results were visually presented in Chapter 3, this chapter’s main

function is to present the performance of the different algorithms, like the accuracy,

and the effects of different parameters and thresholds.

All of the results were calculated using a Ryzen 2600X 6-core processor, running

at a base clock of 3.6 GHz and a boost clock of 4.25 GHz, and a GTX 1060 6GB

graphics card with a base clock of 1.5 GHz and a boost clock of 1.9 GHz.

The validation was carried out on the previously mentioned study area in Chapter

3.1 which covers an area of 1.93 square kilometers.

5.1 CHM-based approach

As we can see in Table 5.1, the method significantly reduces the runtime of the

whole workflow because it is run right after the potential tree seeds (local maximums)

are found, so all of the further steps have a reduced number of candidates to consider.

The threshold(T) is the main variable that defines how many points have to

resemble a building for the seed point to be considered invalid.

The best results were arguably obtained with the threshold set at 20 points, at

this level, the number of trees matched was reduced by 2% but there was a 37%

decrease in the number of false positives and a 63% decrease in the runtime of the

workflow.
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Original T20 T17 T15

Detected Trees 1718 1461 1355 1307

Ref. Trees Matched 1096 1072 1052 1039

Ref. Trees Failed 211 235 255 268

Match Ratio 83.36% 82.02% 80.49% 79.50%

False Positives 622 389 303 268

Runtime 1505 s 553 s 448 s 375 s

Table 5.1: Performance of the CHM-based approach with different thresholds(T)
and a window size of 7.

5.2 Density-based approach

As discussed in Section 3.2 and Section 4.2, 2 different methods were created, one

based on a model density function and one based on a manually specified threshold

ratio. The ratio-based method seen in Table 5.2 uses the best-performing thresholds

in the manual examination, specifically the bins between bins number 7 and 15 have

to be cumulatively at least 1.5 times dense as the bins below them.

Model-based Ratio-based

Detected Trees 1362 1508

Ref. Trees Matched 878 954

Ref. Trees Failed 429 353

Match Ratio 67.18% 73%

False Positives 484 554

Runtime 7350 s 7323 s

Table 5.2: Performance of the Density-based approaches.

5.3 Neural network based approach

The Neural network based approach’s results improved as more upsampling was

applied to the original AHN3 dataset as discussed in Section 3.3, so datasets with

different densities were created to conduct experiments on the approach. In Table
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5.2 we can see the effect of the density of the point clouds on the inference time of

the KPConv neural network trained on the Paris-Lille-3D dataset.

Density (points/m2) Avg Time (s) Whole Time (s)
6-10 0.40 4536.14
200 0.43 4850.28
500 0.47 6133.43
1000 0.71 9028.01
2000 1.19 15207.19

Table 5.3: Inference times for KPConv with different density point clouds

The classification of the areas under investigation as tree or non-tree using the

segmentation results proved to be challenging, as the criteria used in the task ob-

tained poor results, this problem will be discussed further in Chapter 5.4. Because

of the large number of different criteria and different combinations of them which

all depend on the density of the data, no validation results are included.

The accuracy of the neural network is better shown in Chapter 3.3 as the results

are hard to quantify because no validation dataset is available for the study area.

5.4 Discussion

After experimenting with different parameters and areas regarding the filtering

of false positive tree detections using neural networks, the following things were

deduced:

• Criteria Selection. After the segmentation is run, the task is to make a bi-

nary classification based on the obtained results. Different criteria were tested,

for example, setting a threshold for the ratio of ground and vegetation points,

or limits were set for the maximum number of building points or minimum

points for the number of points containing vegetation or the combination of

those, but the results of the classification were underwhelming. Many trees

were removed from the results and only a small amount of false detections

were removed, even though visual examination of select areas with different

landscapes showed good results. To create a more robust and accurate method,

further examination would be needed on the trees that were classified as non-

trees or vice-versa, and new, more refined criteria should be developed.
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• Effects of upsampling. Upsampling the dataset greatly improved the results

of the neural networks, but as we increase the density of points we cause

a change in the ratio and number of points thus making direct comparison

between methods with the same selection criteria but different point densities

a difficult task.
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Chapter 6

Conclusion

To summarize, in this study I have presented different types of approaches that

can assist in the problem of finding and removing false positive tree detections in

urban environments. The discussed approaches can be applied to various geoinfor-

matical tasks that utilize DEMs or raw point clouds.

By creating a CHM-based method that removed seed points that were presenting

building-like characteristics that could be derived from the DEMs, it was shown that

a relatively simple method can help improve results significantly without the need

for expensive calculations or a complex workflow. Because of the nature of LiDAR

technology, datasets are inherently large and methods that can help improve results

without additional overhead can be beneficial.

As density-based algorithms are widely used in forestry, it was important to un-

cover how their performance translates into an urban setting. After the examination

of the algorithms on the AHN3 point cloud, it was evident that the similarity be-

tween man-made objects and trees made it hard for them to differentiate between

trees and non-trees without more complex heuristics or additional processing steps.

Evaluating the performance and behavior of current state-of-the-art neural net-

works on datasets with different capture methods and characteristics than the ones

they were trained on, gave insight into their potential use in areas other than those

they were originally designed for. By applying upscaling to the ALS datasets it was

shown that the selected networks have promising adaptability and could be effec-

tively used for processing point clouds captured by different sensors with different

output resolutions.
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6.1 Future work

The presented approaches can all be improved in different ways, first, I want to

address the density-based approach:

• The current method only takes into account the vertical density of the potential

trees, an added horizontal density analysis could improve the accuracy of the

method.

• The thresholding in this approach was based on the average probability density

function of the trees found in the validation dataset, this can lead to inaccu-

racies, because the trees can be of different heights and species with different

point densities. If a dataset were created with the specific characteristics of

each species, it would allow researchers to create more accurate heuristics.

It would open up many different possibilities for classification, including the

training of neural networks to distinguish different objects based on the profile

of their density.

As for the neural network based segmentation, the following improvements could

be made:

• The neural network based segmentation classifies all of the points in the area

where the potential trees could be. After the classification we need to decide by

the number and position of classified the points, if there is a tree there, we have

to create some kind of heuristic to make a decision. In the current approach,

there was a thresholding based on the ratio of points classified as vegetation

and the ground or there was a set number of minimum points that had to be

present for it to be considered a tree. With a more nuanced heuristic approach

or a more complex approach that is combined with the density analysis of

the points, the results of the segmentation could be utilized to their fullest

potential.

• As the neural networks weren’t trained specifically for an ALS dataset, creating

a dataset specifically for urban segmentation would allow for the exploration

of using transfer learning to improve the accuracy. Also, if the dataset size

allows, the networks could be fully trained from start to finish, specifically for

use in ALS-based geoinformatical analysis.
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6. Conclusion

• The performance of the chosen neural networks could be improved if they

were converted to either TensorRT or ONNX [22] enabling easier integration

into C++ and improving inference speed, unfortunately, the compatibility of

the 3D Segmentation capable models with these technologies is not yet on an

optimal level to accomplish this promptly.
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