
Eötvös Loránd University

Faculty of Informatics

Dept. of Software Technology and Methodology

Catenary segmentation and error detection
in LiDAR point clouds

Supervisor: Author:
Máté Cserép Attila Láber
Assistant Lecturer Computer Science for

Autonomous Systems MSc

Budapest, 2023

Contents

1 Introduction 3

2 Technological background 5

2.1 LiDAR . 5

2.2 Railway catenary systems . 6

2.2.1 Parts of the catenary . 7

2.2.2 Diagnostics . 9

3 Literature 11

3.1 Traditional railway LiDAR data processing 11

3.1.1 Wires . 11

3.1.2 Masts . 12

3.1.3 Cantilevers . 12

3.1.4 Conclusion . 13

3.2 Artificial intelligence in railway LiDAR data processing 13

3.2.1 Benefits . 13

3.2.2 Weaknesses . 13

3.2.3 Recent findings . 14

3.2.4 Conclusion . 16

4 Datasets 17

4.1 Data recording . 17

4.2 Szabadszállás – Csengőd dataset . 18

4.2.1 Sample: MÁV-simple . 19

4.2.2 Sample: MÁV-long . 19

4.2.3 Cable stagger detection and cantilever segmentation samples . 20

4.3 Szentgotthárd dataset . 21

4.3.1 Sample: GYSEV-standard . 21

CONTENTS

4.3.2 Sample: GYSEV-mixed . 22

5 Methodology 23

5.1 Mast segmentation . 23

5.1.1 Removing unnecessary points 24

5.1.2 Finding possible mast centroids 25

5.1.3 Segmenting masts . 30

5.2 Cantilever segmentation . 34

5.3 Contact cable stagger checking . 36

6 Implementation 39

6.1 Code Availability . 39

6.2 About the railroad framework . 39

6.3 New and modified filters . 40

6.4 Modifications in the framework . 40

6.4.1 Handling multiple seed clouds 40

6.4.2 Keeping a reference to the original input cloud 41

6.4.3 Point cloud demeaning . 41

7 Results 43

7.0.1 Mast detection . 43

7.0.2 Cantilever detection . 46

7.0.3 Contact cable stagger checking 47

8 Conclusion 49

8.1 Future work . 50

Bibliography 51

List of Figures 54

List of Tables 56

Chapter 1

Introduction

With the spreading of ADAS1 [1], LiDAR2 sensors have become relatively acces-

sible and well-known in the past decade. Apart from autonomous driving, there are

many applications of such Light Detection and Ranging sensors in different fields.

The sensors can be mounted on drones or aircraft to create high-quality digital ele-

vation models. They are also used in agriculture for crop mapping, in the video game

industry for reproducing real-life scenes with millimetre precision, and of course in

land surveying for all sorts of tasks.

Railways — next to many other advantages — provide the most environmentally

friendly mode of transportation [2], especially thanks to the electrification of railway

lines. With increasing track speeds, there is a great demand for speeding up and

improving the accuracy of error detection and inspection on such electrified sections.

In Hungary, there are a total of over 8010 kilometres of tracks in active use, out of

which 3269 kilometres are electrified [3].

The goal of my work is to provide a set of reliable and efficient algorithms to

segment parts of the overhead catenary system, and to detect stagger of the con-

tact cable beyond operational limits. I researched the possibility of using artificial

intelligence-supported methods for these tasks, and based on my findings I chose to

stick with traditional 3D/2D processing algorithms. I also extended the functionality

of the framework in which I implemented my algorithms.

There are two input datasets used, both are dense LiDAR point clouds recorded

on Hungarian electrified track sections. One was provided by MÁV3, the other by
1Advanced driver-assistance systems
2Light Detection and Ranging
3Magyar Államvasutak, Hungarian State Railways

3

1. Introduction

GYSEV4. These datasets contain a very dense point-based representation of the

recorded areas, with the first set containing over 1.5×109 points. The algorithms also

rely on seed clouds, which contain only the previously found points corresponding to

the tracks and the powerline. These are used to filter out irrelevant points, making

the algorithms faster and more robust. The outputs are the points belonging to the

segmented masts and cantilevers. In the case of the stagger detection, the outputs are

the points exceeding the maximum allowed stagger threshold, or a warning message

in case of a lack of stagger in the inspected section.

The implemented methods can robustly segment the mast and cantilever points

with over 95% accuracy, and detect stagger of the contact cable beyond the allowed

thresholds correctly.

4Győr–Sopron–Ebenfurti Vasút, the second largest rail infrastructure operator in Hungary

4

Chapter 2

Technological background

This chapter provides an overview of the technologies reviewed and used, as well

as the most important railway terminologies to help understand the problem better.

2.1 LiDAR

LiDAR is a method that determines ranges to its surroundings by emitting a

laser beam and measuring the TOF1 after having collected the reflected feedback.

As the laser beam travels at the speed of light, we can easily deduct the distance

from the TOF. Figure 2.1 shows this principle.

Figure 2.1: Principles of LiDAR2

1time of flight
2From Panasonic Newsroom Global: "Eyes" for Autonomous Mobile Robots, 2017 [4]

5

2. Technological background

There are different types of LiDAR systems built for specific tasks. Based on the

data acquisition method, we distinguish three main types of them:

TLS, or terrestrial laser scanning (often referred to as ground-based LiDAR) is

the form of 3D scanning using static, tripod-mounted laser scanners. This

technology can reach sub-millimetre accuracy and is mainly used for creat-

ing high-resolution geometric data from buildings and various other objects.

Another use case is terrain mapping. Its disadvantage is the need for multiple

scans for covering larger areas, due to the relatively low range (usually a few

hundred metres).

ALS, or airborne laser scanning is the form of 3D scanning using laser scanners

directed towards the ground, mounted on aircraft or helicopters. The aircraft

can then fly over the surveyed area in a scanning pattern, producing an ac-

curate point cloud of the surface. This technology can be used to cover large

areas of interest in short periods of time, at the cost of accuracy. Still, modern

ALS systems can reach up to sub-meter accuracy [5], which is mostly sufficient

for the main use case of creating digital elevation models.

MLS, or mobile laser scanning is the form of 3D scanning using laser scanners

mounted on moving platforms, like boats, trains or road vehicles. This makes

it suitable for surveying tasks in both urban and rural environments, where

higher accuracy is required than what ALS systems can provide.

The latter two, ALS and MLS also use GNSS3 and IMU4 systems for georefer-

encing the scans.

2.2 Railway catenary systems

The first electrified railways appeared in the 19th century [6]. Since then, elec-

trification of railways has led to a faster and more environmentally friendly way of

travelling, beating any other mode of transportation in these regards [2]. These sys-

tems are responsible for distributing the electrical current (25 kV 50 Hz in Hungary)

along the railway tracks, used by the electric railway vehicles running on such tracks.
3Global Navigation Satellite System
4Inertial Measurement Unit

6

2. Technological background

Nowadays almost exclusively overhead catenary systems are used in railway trans-

port.

We can categorise the parts of these systems as trackside (masts, wires), or

non-trackside equipment (feeder stations, electrical grid). In the following, I will be

providing some technical details on the trackside parts of these systems, as the rest

are not relevant to my work.

2.2.1 Parts of the catenary

Overhead catenary systems have many different parts (see Figure 2.2), which are

constantly being exposed to the weather.

Figure 2.2: The different parts of overhead catenary systems5

The poles or masts are used to keep the other parts of the system in place.

These masts come in many different shapes. There are two main types in use in

Hungary today: cylindrical concrete, and steel lattice masts (shown on Figure 2.3).

These masts can be installed on either side of railway tracks. The maximum distance

between them is 75 metres at installations before 2021, and 69 metres after. They
5Adapted from Wikimedia Commons, 2010

7

https://commons.wikimedia.org/wiki/File:Felsovezetek_1.JPG

2. Technological background

are mostly installed orthogonally to the ground plane but can be tilted slightly in

curved track sections.

Figure 2.3: Non-cylindrical steel lattice masts

The second most important parts are the different wires or cables held in place

by these masts. There are three types of such cables:

1. Contact cable: lying the lowest, carries the current for the rail vehicles, being

in constant contact with their pantographs6.

2. Catenary cable: lying in the middle, this cable is responsible for keeping the

contact cable in place at higher speeds.

3. Feeder cable: lying the highest, this cable is used on single track lines as a

backup to supply current to those sections behind a broken contact cable.

In Hungary, the contact cable generally lies at 6 meter height above rail level.

One special property of this cable is its stagger. This is necessary to avoid the cable

"carving" a groove in the pantographs. This is shown by Figure 2.4. This stagger

is maximally 40 cm at installations before 1995, and 30 cm at newer installations
6the device mounted on the roof of electric vehicles to collect power from the overhead wire

8

2. Technological background

since. The allowed discrepancy from these values is 1 cm in the case of European

international corridors (category "A") and 3 cm in the case of less important railway

lines.

Figure 2.4: Stagger of the contact wire viewed from the top7

The contact and catenary cables are connected by the droppers. Without them,

the contact cable could excessively move around both in the horizontal and vertical

directions when vehicles are passing.

The contact and catenary cables are suspended from cantilevers, which are at-

tached to the masts. Between the cantilevers and the masts electrical insulators are

placed, so that the current cannot flow through to the masts, potentially causing

harm to people and animals.

2.2.2 Diagnostics

According to the Hungarian State Railways’ data, more than 68% of pantograph

damage and breakage are caused by the failure of the catenary system [7]. The

pantographs of the trains are in constant contact with the contact wires. This puts

a lot of stress on the system, so naturally, it has to be inspected regularly to check

for loose or damaged parts. This visual inspection is usually carried out manually,

by railway workers walking along the track, checking for visible defects. This is not

only time-consuming and dangerous, but also unreliable for detecting less prominent

problems early on.

There are some more sophisticated ways of detecting defects, for instance by using

railway vehicles specifically designed for diagnostics of the overhead wire systems

(see Figure 2.5). The main drawback of this approach is the low number of such

diagnostic units. This also requires running an extra train with a special carriage on

the otherwise mostly already busy electrified line networks.
7Adapted from Rónai Endre: Vasúti villamos felsővezeték, 1997

9

2. Technological background

To overcome this limitation, some companies provide ready-made catenary mon-

itoring systems, which can be installed directly on the roof of the locomotives pulling

the regular passenger/freight trains [8], thus not disturbing traffic flow.

Deploying such systems only makes sense if the units are installed on multiple

vehicles, evenly spread throughout the electrified railway network, which is hard to

plan for. Installing and maintaining such units in number is certainly not the most

cost-efficient either.

As a more accessible and flexible solution, a mobile laser scanner can be fixed on

a flat wagon, which is exactly how the dataset introduced later has been acquired.

Figure 2.5: Catenary diagnostic wagon of the Hungarian State Railways8

8From Czifra Zoltán, 2001 (via www.gigantclub.hu)

10

http://www.gigantclub.hu/gigant_club/pic/hu/special/felsovez/index_edit_hu.html

Chapter 3

Literature

In this chapter, I’ll introduce the reviewed literature which I used to gain insight

into the most widely used methods to segment railway LiDAR point clouds and

measure the stagger of the contact wire.

3.1 Traditional railway LiDAR data processing

For an easier and more accurate segmentation, separating the catenary-related

points from the other parts of the scene (rails, track bed etc.) is generally the first

step in the process.

3.1.1 Wires

Segmentation

The simple assumption can be made that the contact wire lies in an almost

constant height above the tracks [9]. Due to the geometric placement of the cables,

a narrow bounding box can be imagined above the tracks, which contains all the

points belonging to the contact and catenary wires [10]. Voxelization is another

technique that can be successfully used for segmenting the wires as shown by Geng

et al. [11].

One more property that can be exploited is the linear nature of these objects.

Fitting a line with RANSAC1 is a good starting point for figuring out the orientation

and location of the different wires, and is used in many applications [12]. Projecting
1Random sample consensus

11

3. Literature

the point cloud into 2D space can also be a good approach as Cserép, Hudoba, and

Vincellér showed [13].

Stagger detection

Stagger detection is carried out on the contact cable. For this, the contact cable

has to be separated from the rest of the cables, droppers, and cantilevers. Geng et al.

and Gutiérrez-Fernández et al. used DBSCAN2 for clustering the different cables,

from which the one lying lowest, horizontally between the rail pairs was selected as

the contact cable [11], [14].

The stagger of the wire can then be calculated in relation to the centreline of the

track gauge for each contact cable point.

3.1.2 Masts

Once the wires are separated, we are left with the points belonging to masts,

cantilevers and droppers. Catenary masts are generally placed at a fixed distance

apart from each other. Next to that, their cylinder-like shape and vertical orientation

can be helpful for segmentation. Methods like RANSAC can be used for finding their

corresponding points.

3.1.3 Cantilevers

The cantilevers can be found attached to the masts, connecting them with the

two previously found wire point sets. Using a region-growing algorithm with the XY

coordinates of the former, and the Z coordinate of the latter for the starting point

can yield reliable results as [9] showed.

Segmenting droppers is often overlooked in publications. If we remove all pre-

viously segmented points, we should be left with the points mostly corresponding

to the droppers. To eliminate false positives, these points can be projected to 2D

space from both top-down and side views. In these projections they would be seen

as evenly distributed points from the top view along the contact wire’s line, and

evenly distributed vertical lines from the side view. Combining these observations,

we can easily construct 3D bounding boxes, containing the dropper points.
2Density-based spatial clustering of applications with noise

12

3. Literature

3.1.4 Conclusion

There are many different ways to reliably segment the different parts of rail-

way catenary systems using traditional methods. Most of these techniques rely on

the geometric relationship between different parts of the infrastructure, and also

the geometrical properties of the objects themselves. With the spreading of artifi-

cial intelligence, most recent studies tend to discuss the potential of using machine

learning-based methods, with less focus on further improving the accuracy of long-

established techniques.

3.2 Artificial intelligence in railway LiDAR data

processing

In these few sections, I am discussing the benefits and weaknesses of using such

neural network-supported solutions and providing an overview of the most recent

findings on this topic.

3.2.1 Benefits

The greatest benefit of artificial intelligence-based segmentation is that a network

trained on different environments and data with different quality can successfully

segment different inputs without the need for individually tweaking a set of param-

eters in theory [15]. Another natural benefit is that no complex algorithms have to

be implemented, we only need labelled training sets and time to train and tweak

the network to reach acceptable results. In many cases, artificial intelligence-based

solutions are less computationally expensive than the classic computer vision-based

ones.

3.2.2 Weaknesses

As already mentioned, labelled training data is essential for training these neural

networks. Either fully or at least partly manual work is needed to label the point

clouds, which is very tedious. The quality of the training data is very important,

but quantity is almost as essential. As Figure 3.1 shows, this is even more crucial

for deep learning methods: traditional machine learning plateaus with millions more

13

3. Literature

training instances, while deep networks can continue to learn more. With more

general problems availability of public labelled training sets is not an issue, however,

railway infrastructure is still being treated as sort of a national secret amongst most

countries. Thus, there are little to no publicly available labelled railway point clouds

at the time of writing these lines.

Figure 3.1: The effect of the amount of training data on old machine learning and
deep learning performance.3

3.2.3 Recent findings

In one of the most recent studies Grandio et al. achieved 100% precision for

segmenting rails and 98.9% for cables on 32768 input points, after 337 minutes of

training [15]. In this paper, the PointNet++ and KPConv architectures were found

to yield similar performance. Note that in this study the training data was pre-

processed, removing most of the surrounding terrain around the rails. When feeding

the network a sparser point cloud also containing the surroundings, the network
3From Alom et al.: “A State-of-the-Art Survey on Deep Learning Theory and Architectures”,

2019 [16]

14

3. Literature

struggled to provide usable results (see Figure 3.2), highlighting the importance of

more varied training data.

Figure 3.2: Feeding unseen data to the network can lead to weak results, like ground
points getting falsely classified as rails4

Manier et al. tried to take advantage of specific characteristics of the railway

scenes, specifically the strong vertical component of objects of interest [17]. An axi-

ally symmetrical transformation was defined by them to conserve relative elevation

information. With this addition, a mean IoU5 of 83.4% was achieved on their dataset

of the Paris-Lyon high-speed line, compared to the ConvPoint (78.1%) and ShellNet

(66.1%) methods.

Yu et al. focused on segmenting rails, and tried to propose a neural network solu-

tion which can be used in real-time [18]. As Pointnet and RandLA-Net only reached

a maximum of around 83% IoU, they hand-crafted their own network architecture,

which was somewhat slower, but still able to process data in real-time and also reach

an IoU of 95.14%.

As discussed earlier, one of the main drawbacks of artificial intelligence methods

is the need for labelled datasets. In the paper by Guinard et al., an attempt was

made to address this by creating a weakly supervised method for speeding up the

pointwise classification of LiDAR acquisitions [19]. They reached an overall F1-score6

of 96.13%, however, for this, the point clouds had to be pre-segmented manually.
4From Grandio et al.: “Point cloud semantic segmentation of complex railway environments

using deep learning”, 2022 [15]
5Intersection over Union, an evaluation metric
6an evaluation metric that measures accuracy, mainly used in machine learning

15

3. Literature

3.2.4 Conclusion

Neural network-based solutions have gotten quicker, more advanced and more

accurate over the last few years. Public training data is still virtually unavailable,

and after having reached out to multiple researchers, it seems that the national

railways are not willing to share their acquisitions publicly. There is research in the

direction of automating the creation of such labelled datasets [19], which can drive

more interest towards neural network-based methods in the field of railway point

cloud segmentation tasks.

16

Chapter 4

Datasets

In this chapter, I will introduce the datasets which were used during devel-

oping and testing my algorithms. One of them was recorded in Central Hungary

between Szabadszállás and Csengőd stations, the other in Western Hungary,

around Szentgotthárd station.

4.1 Data recording

The two datasets were recorded with the same method. This consisted of loading

a car with an MLS system on an open wagon, which was then pulled along the rails

by a locomotive at a maximum of 60 km/h speed, illustrated by Figure 4.1. The

MLS system used was a Riegl VMX-450 MMS 3.1 unit, which apart from supplying

LiDAR data was also taking pictures every five metres. These are mainly used to

supply colour information for the 3D point cloud. The RGB attributes were not used

in my work, as other systems might not provide them. The sensor uses two spinning

mirror laser scanners for mapping out the 3D point clouds, recording 1.1 million

points every second, operating at 12000 RPM.

Figure 4.1: The setup used for collecting the data

17

4. Datasets

4.2 Szabadszállás – Csengőd dataset

This dataset was provided by MÁV, the Hungarian State Railways. It was

recorded in 2016 between the stations of Szabadszállás and Csengőd on railway

line number 150 (see Figure 4.2), which is undergoing complete reconstruction at

the time of writing this thesis.

The dataset contains 18.5 kilometres of railway infrastructure with rural sur-

roundings, extending to about 65 metres orthogonally in both directions from the

centre of the electrified single-track railway line. The section does not contain bridges

or tunnels.

Figure 4.2: Covered area of the Szabadszállás – Csengőd dataset

In total, there are over 1.5 × 109 points in the dense point cloud, which has

an average precision of 3 mm and a maximal error of 7 mm. The points are geo-

referenced in the hungarian EOV1 coordinate system with a positional accuracy of

3–5 centimetres.
1short for uniform national projection (egységes országos vetület)

18

4. Datasets

4.2.1 Sample: MÁV-simple

The 100 metres long section contains around 7.3 million points. It is cropped

between the EOV Y coordinates of 159100 and 159200. It contains two cylindrical

masts to detect, and no interfering trackside objects (see Figure 4.3).

Figure 4.3: The MÁV-simple sample visualized in 3D

4.2.2 Sample: MÁV-long

The 560 metres long section contains around 40.3 million points. It is cropped

between the EOV coordinates of (154707,666893) and (155266,667988). It contains

eight cylindrical masts to detect and also has multiple interfering mast-shaped ob-

jects near the tracks (see Figure 4.4).

19

4. Datasets

Figure 4.4: The MÁV-long sample visualized in 3D

4.2.3 Cable stagger detection and cantilever segmentation

samples

As there is little variation in the structure of cables and cantilevers between

the Szabadszállás – Csengőd and Szentgotthárd datasets, only samples from

the first were used to evaluate these algorithms. Thus, the cantilever detection was

run on the above two samples, and for contact cable stagger detection the already

detected cables [12] from these same samples were used (see Figure 4.5).

(a) Detected cables from the
MÁV-simple sample

(b) Detected cables from the MÁV-long
sample

Figure 4.5: Cable samples from the Szabadszállás – Csengőd dataset

20

4. Datasets

4.3 Szentgotthárd dataset

This dataset was provided by GYSEV/Raaberbahn which is the second-largest

railway company and railway infrastructure owner in Hungary. It was recorded in

2017 around Szentgotthárd station (see Figure 4.6) and contains mostly urban sur-

roundings around the electrified single-track line. It contains over 800 million points.

The dataset was recorded on a 4.7 kilometres long section in a width of about

90 metres. The section does not contain bridges or tunnels.

Figure 4.6: Covered area of the Szentgotthárd dataset

4.3.1 Sample: GYSEV-standard

The 185 metres long section contains around 7.4 million points. It is cropped

between the EOV coordinates of (183790,440290) and (183845,440478). It contains

three cylindrical masts to detect and also some interfering mast-shaped objects near

the tracks (see Figure 4.7).

21

4. Datasets

Figure 4.7: The GYSEV-standard sample visualized in 3D

4.3.2 Sample: GYSEV-mixed

The 188 metres long section contains around 7.3 million points. It is cropped

between the EOV coordinates of (183765,440619) and (183850,440807). It contains

three masts to detect (two lattice, one cylindrical), and no interfering trackside

objects (see Figure 4.8).

Figure 4.8: The GYSEV-mixed sample visualized in 3D

22

Chapter 5

Methodology

In this chapter, I will introduce the three algorithms I developed for segmenting

masts, cantilevers and finally for detecting contact wire stagger above operational

limits. The assumption was made that the inputs of these methods are preprocessed

in the sense that they contain straight rail track segments. In the case of curved

sections, they can be cut at the detected curves as shown by Tábori yielding multiple,

virtually straight sections [20].

5.1 Mast segmentation

In most publications, the detection of masts is done by using pattern-matching [9]

or voxel-based methods [11]. My proposed method is different in that it utilises cer-

tain characteristics of the railway point clouds to segment the points belonging to

masts. I focused on accurately segmenting cylindrical masts, as most of the masts

found in the two datasets were of this type. For the lattice masts a fallback mecha-

nism was implemented, which still provides usable results.

The method is divisible into three main parts:

1. Removing unnecessary points.

2. Finding possible mast centroids.

3. Segmenting masts.

Figure 5.1 shows the algorithm’s flowchart.

23

5. Methodology

Figure 5.1: Overview of the mast segmentation pipeline

5.1.1 Removing unnecessary points

The catenary masts lie within a few metres distance from the tracks, so a large

portion of the input data outside this region can be disregarded. For this, the al-

ready detected rails [21] are used as a reference. Only the points within a maximum

2.2 metres distance on each side of the tracks are kept and passed on to the next

stage of processing. The steps required for this are shown by Algorithm 1 [12].

24

5. Methodology

Algorithm 1 Width filtering with seed

1. Fit a line on seed cloud S with RANSAC.

2. Calculate the angle α the fitted line closes with the Y-axis.

3. Create copies of input P and S clouds as Q and Srot.

4. Rotate both Q and Srot on the Z-axis by α.

5. Find minimum and maximum values xmin, xmax on the X-axis of Srot.

6. Remove points pi from P where:
qi ∈ Q : qi.x < xmin − δ or qi.x > xmax + δ.

7. Return P .

The remaining points after running width filtering on sample MÁV-long are

visible in Figure 5.2.

Figure 5.2: Point cloud after width filtering

5.1.2 Finding possible mast centroids

One of the unique characteristics of the input data utilisable for finding potential

mast points is the distribution of points based on their density. Point density is a

metric that can be calculated for a point by counting how many neighbouring points

we can find within a sphere with a given radius centred at our point. Equation 5.1

25

5. Methodology

shows the calculation of this property for point p in the set of points P ⊂ R3 with δ

being the radius. Function δ(p, q) is the Euclidean distance formula (δ : P x P → R).

density(p) = | { δ(p, q) < γ } | where p, q ∈ P, p ̸= q and γ ∈ R (5.1)

Figure 5.3 shows sample MÁV-simple coloured by the calculated density values.

Red and orange points have a dense, while blue ones have a sparse neighbourhood.

Figure 5.3: Point cloud coloured by density values

As visible from the figure, points near the vertical centre of the masts have a high

density value, while points belonging to vegetation and other points out of interest

have a low density value. Thus, by filtering points above a certain density value, we

can find points belonging to masts. This filtering is shown by Equation 5.2, where

λ is the minimum number of neighbours to keep points with. Calculating density

values is a computationally demanding task, with an O(n2) time complexity when

implemented on non-optimal spatial data structures.

Q = { p ∈ P : density(p) > λ } where λ ∈ N (5.2)

Thankfully, it is known that the points we are looking for lie above the tracks.

Thus, taking a vertical slice a few metres above the tracks, we get a much smaller

set of points for which the density values can be calculated significantly faster. This

bandpass filtering method is shown by Equation 5.3, where S contains the sliced

points which lie within a δ vertical distance from the midpoint. After evaluating

26

5. Methodology

multiple sample inputs, the values 0.5 metres and the level of the rails plus 3 metres

were set for δ and midpoint accordingly.

S = { p ∈ P : midpoint− δ < p.z < midpoint+ δ} where midpoint, δ ∈ R (5.3)

The result of running the bandpass filter after width filtering on sample MÁV-

long is visible in Figure 5.4a.

Finding the optimal radius and neighbour count for the density filtering is not

a straightforward process. A radius of 0.16 metres and a minimum neighbour count

of 150 points were found through trial and error. With these values, only the points

belonging to mast-like trackside objects are kept. Next to the desired catenary masts,

this also includes signal masts (Figure 5.4b, MÁV-long sample), which will need

to be eliminated later.

To speed up processing time, a second bandpass filter pass is run on these points.

This only keeps points within Z values of +/− 0.1 metres of the midpoint, reducing

the number of points by 80%. The result of running this second pass is visible in

Figure 5.4c.

The next step is to cluster points belonging to different masts. For this, we can

then group them into clusters based on their minimum Euclidean distance from

each other. Using a Kd-tree1 structure this clustering can be carried out as shown

by Algorithm 2 [22].
1k-dimensional tree, a space-partitioning data structure

27

5. Methodology

(a) Result of first bandpass filter

(b) Density filter

(c) Second bandpass filter

Figure 5.4: The first three steps of finding possible mast centroids

28

5. Methodology

Algorithm 2 Euclidean clustering

1. Create a Kd-tree representation for the input point cloud dataset P .

2. Set up an empty list of clusters C, and a queue of the points that need to be
checked Q.

3. Then for every point pi ∈ P , perform the following steps:

• Add pi to the current queue Q.

• For every point pi ∈ Q do:

– Search for the set P k
i of point neighbors of pi in a sphere with radius

r < dth.
– For every neighbor pki ∈ P k

i , check if the point has already been
processed, and if not add it to Q.

• When the list of all points in Q has been processed, add Q to the list of
clusters C, and reset Q to an empty list.

4. The algorithm terminates when all points pi ∈ P have been processed and are
now part of the list of point clusters C.

By calculating the centroids of these clusters, we then get the centroids of possible

masts. These centroids however do not accurately reflect the true centroids of the

masts, as some mast points with lower density values might not have been taken into

account when calculating them. For this reason, the centroids are being recalculated

for the points within a cylindrical bounding box of the original centroids. These

bounding boxes, which are centred on the original centroids, have a 0.5 metres radius

and a height of 0.2 metres. These values were found to be sufficient for enclosing all

possible mast points in the height level used without introducing points from nearby

vegetation and other objects. Figure 5.5 illustrates this from a top-down perspective.

The original centroid (calculated from dense points in yellow) is shown in orange,

while the refined centroid (recalculated from the dense, and additionally the light

blue points) is coloured green.

29

5. Methodology

Figure 5.5: Centroid recalculation

5.1.3 Segmenting masts

After the candidate mast centroids have been found, the final step is to check

if there is a valid mast object centred around them, and if so, their corresponding

points have to be filtered. Figure 5.6 shows how these steps are carried out.

30

5. Methodology

Figure 5.6: The actual mast segmentation algorithm

For each centroid point, the points within a large cylindrical bounding box are

selected first. This bounding box horizontally centred on the centroid has a radius

of 0.4 metres. Its height is 13 metres, reaching from 5 metres below to 8 metres

31

5. Methodology

above the Z value of the centroid. The points after this step are demonstrated by

Figure 5.7a in the case of the MÁV-long sample. Next, the height of the points

inside this bounding box is calculated by taking the difference between the largest

and smallest point values on the Z-axis. If this height value is below 8 metres, the

algorithm moves on to the next candidate centroid, as the catenary masts have a

general height of 9–10 metres. An example of this behaviour is visible in Figure 5.7a,

with the points to disregard belonging to non-catenary mast objects shown in orange.

If the height value is above 8 metres, the next step of processing is fitting a cylin-

der to the selected points with the RANSAC algorithm. If we don’t find a cylinder

fitting the model, all the previously selected points are saved for the currently pro-

cessed centroid as masts points. If a fitting cylinder is found, the points inside the

cylindrical bounding box constructed with the model’s coefficients are saved as mast

points for the currently processed centroid (see Figure 5.7c). This extra step is nec-

essary because of the slightly tapered nature of the cylindrical masts, due to which

RANSAC is not able to correctly classify all the mast points as inliers, shown by

Figure 5.7b.

32

5. Methodology

(a) Filtering points within large cylindrical bounding boxes of centroids

(b) Inliers after RANSAC cylinder fitting

(c) Filtering points with coefficients of fitted cylinder

Figure 5.7: Finding the masts points for the centroids

33

5. Methodology

5.2 Cantilever segmentation

For segmenting the cantilevers, the already detected wires and masts are supplied

to the pipeline next to the input point cloud. Figure 5.8 shows the general overview

of the pipeline.

Figure 5.8: Cantilever segmentation pipeline

First, the points lying outside of the region where the cantilevers are expected

to be found are removed from the data. This is done in two passes, first in the

horizontal, then in the vertical direction. For the horizontal pass, the previously

introduced Algorithm 1 (Page 34) is used with the already detected wires supplied

as a seed. For the vertical pass all points above the highest, and below the lowest

wire points are removed. The result of these steps is shown in Figure 5.9a, on sample

MÁV-simple.

After these steps, we are left with points in the region of interest, but next to the

cantilever points, all the points belonging to wires and some belonging to the masts

are also contained in this area. Thus, the next step is to remove said points. For this,

all the points within a small radius of the already detected mast- and cable points

34

5. Methodology

are removed (see Figure 5.9b). This radius is 8 and 5 centimetres for the mast- and

cable points respectively. To speed up this process an Octree2 representation of the

points is used. This process is shown by Algorithm 3.

Algorithm 3 Cantilever filter

1. Construct Octree representation O of input cloud P .

2. Initialize empty cloud Result.

3. For both cable and pole seed clouds S do:

• Initialize empty set of indexes I to be removed.

• For each point s ∈ S do:

– Using O find all i for which pi ∈ P falls within δ radius of s.
– Add all i to I.

• Add all pi ∈ P to Result where i /∈ I.

4. Return Result.

Next, the remaining points are clustered using the previously introduced

Euclidean clustering algorithm (Algorithm 2). This clustering is being executed on

the remaining points, but the Kd-tree used for searching nearby points is built from

a voxel grid3 of the points with a leaf-size of 35 centimetres. The points of the

constructed voxel grid are shown in Figure 5.9c. The radius is set at 4 centimetres

for this clustering step, after which we get all the points of individual cantilevers

contained in a different cluster, along with several additional clusters containing

irrelevant points.
2a tree data structure where each internal node has exactly eight children
3a sparse 3D spatial data structure

35

5. Methodology

(a) Filtering points within the range of
interest

(b) Removing points near cables and
masts

(c) The constructed voxel grid used for
clustering

(d) Result after clustering and selecting
appropriate clusters

Figure 5.9: Finding the cantilever points

The final step is to select the appropriate clusters and save the points contained

by them as cantilever points. To accomplish this, only the clusters containing a

reasonable number of points are selected for further analysis. This threshold was set

at 2000 points after evaluating the different sample inputs. Then, for each cluster

passing this condition PCA4 is used to determine the orientation of the points. The

points in clusters oriented orthogonally to the cables are saved as cantilever points,

as seen in Figure 5.9d.

5.3 Contact cable stagger checking

For contact cable stagger checking, the already detected cables [12] and addi-

tionally the already detected rail tracks [21] are used. Figure 5.10 shows the outline

of this pipeline.
4principal component analysis

36

5. Methodology

Figure 5.10: Stagger checking pipeline

First, the contact cable has to be filtered from the rest of the cables. For this,

all the points 0.18 metres or above the lowest point of the cable input cloud are

removed. After this step, the RANSAC algorithm is used to fit multiple straight

lines to the horizontally staggering contact cable, eliminating potential noise like

falsely detected cable points belonging to cantilevers or droppers. The result of

these steps is demonstrated by Figure 5.11 on the MÁV-long sample.

37

5. Methodology

Figure 5.11: The filtered contact cable points (red) with the rest of the input points

The stagger of the contact cable is checked relative to the centreline of the rails.

To make this easier, both the contact cable and the rails are rotated parallel to the

Y-axis with the help of PCA. This way the centreline can be computed much easier,

by calculating the mean of the minimum and maximum X coordinates of the rail

points.

Next, the distance of each point from the centreline is calculated on the X-axis.

Then, the below steps follow:

• If this distance is larger than a prescribed stagger value plus a threshold value,

the point is saved as an excessively staggering point.

• If this distance is smaller than a minimum threshold, the point is saved as a

point which lacks stagger.

The prescribed stagger and threshold values differ based on the year of construc-

tion and the class of the railway line as discussed in Chapter 2, Page 9. Thus, these

values can be set as a parameter of the pipeline, as well as the threshold for lack

of stagger. After looping through all contact cable points, the ratio of points saved

as lacking stagger to all the contact cable points is calculated. If this is larger than

45%, a warning is issued indicating a potential lack of stagger. Next to this, the

excessively staggering points — if any — get saved as the output of the pipeline.

38

Chapter 6

Implementation

In this chapter, I will provide some details about the implementation of my

solution.

6.1 Code Availability

The source code is attached next to the thesis. It is also publicly available online

at the https://github.com/GISLab-ELTE/railroad/ repository.

6.2 About the railroad framework

My algorithms were implemented inside the Robust Railroad Infrastructure

Detection Framework, or railroad tool for short. This open-source framework was

built by Cserép, Hudoba, and Vincellér to extract various railroad infrastructure

from dense LiDAR point clouds, with a primary focus on cable and railway track

detection [13].

It is written in the C++ programming language and mainly relies on the PCL1

and OpenCV libraries for extracting important data from the input point clouds.

In the framework, the various algorithms are defined as filters, arranged in a

pipeline. The first filter in line gets the supplied input point cloud as an input. Then

the filters get executed one after the other, passing only the filtered points to the

next filter in line.
1Point Cloud Library

39

https://github.com/GISLab-ELTE/railroad/

6. Implementation

6.3 New and modified filters

Next to using and modifying some already implemented filters to use in my

processing pipelines, I also implemented some new ones providing the necessary

additional functionalities. Most of these filters take parameters and could be used

for other tasks in the future, due to their general nature. The two tables (6.1, 6.2)

below show an overview of these filters and their purpose.

New filters
Filter name Purpose
BandPassFilter Filters points in a selected vertical range.
CantileverFilter Finds cantilever points in region of interest.

CorrigateCentroidsFilter Refines centroids by moving them
to the true centroid.

MinDistanceClusterFilter Implements the Euclidean clustering algorithm.
MinHeightFilter Keeps points above or below specified height.
RansacCylinderFilter Finds mast points for centroids.

StaggerFilter Finds contact cable points with excess stagger
and displays warning for lack of stagger.

Table 6.1: The newly implemented filters

Modified filters
Filter name Modifications
HeightFilter Added multiple seed support and parameter for height limit.
OutlierFilter Added parameters for radius and min. number of neighbours.
RansacFilter Added parameter for distance threshold of RANSAC.
WidthFilter Added multiple seed support.

Table 6.2: The modified filters

6.4 Modifications in the framework

To make implementation easier I extended some of the default functionalities of

the railroad project, such as seed handling, the piping mechanism and point cloud

reading.

6.4.1 Handling multiple seed clouds

By default, the program was only capable of handling a single input point cloud

as a seed, but the cantilever segmentation required both the already detected tracks

40

6. Implementation

and wires as input next to the base point cloud.

For this, I created a new class called SeedHelper, which encapsulates loading,

checking and storing the list of required seed point clouds. Currently, there are four

types of infrastructure for which the user can load seeds: rail, pole, cable and ties.

The user can supply the list of file paths for the different seed point clouds and

another list for their corresponding types with two named arguments.

There are various error-checking mechanisms implemented to handle incorrect

parameterization cases, like the number of supplied paths and types not matching,

or missing type of seed required by one of the filters.

An instance of the SeedHelper class is created at runtime and is passed down the

processing pipes, making it possible to query and use any of the loaded seed clouds

in the different filters.

6.4.2 Keeping a reference to the original input cloud

Due to the architecture of the piping mechanism and filters, only the filtered

points and the seed cloud were passed down to the next filter originally. This meant,

that if for example, we ran a clustering filter, resulting in the centroids of each

cluster found, we would not have access to the original input point cloud anymore,

only these centroid points.

As a workaround, the input point cloud could be supplied as a seed cloud too, but

this was neither practical nor possible in case a different point cloud was required

as a seed by one of the filters.

To overcome this limitation, I modified the CloudProcessor class and the main

entry points of the program, so that a reference is held to the original input cloud,

easily reachable from any filter at any point. This reference is constant, preventing

the programmer from unintentionally modifying the original point cloud.

6.4.3 Point cloud demeaning

Upon reading the las/laz format input and seed clouds, they were originally

scaled and repositioned by the corresponding values found in the headers.

As our datasets were georeferenced in the EOV coordinate system, this meant

that each X coordinate got shifted to a value between 200 000 and 400 000, with

the Y coordinates getting remapped to range from 400 000 up to 1 000 000.

41

6. Implementation

Most of the time this did not pose any problems, but when estimating normal

vectors during mast segmentation, unlikely bad results started to show. The normal

vectors get calculated by using PCA, during which these extremely large values

represented as floating point numbers get multiplied together. This is where a lot of

precision was lost, due to the sampled points being in close proximity to each other,

and the large mantissa.

Equation 6.1 shows the calculation of the covariance matrix, where k is the

number of points considered in the neighbourhood of pi and p̄ represents the 3D

centroid of the nearest neighbours.

C =
1

k

k∑
i=1

·(pi − p̄) · (pi − p̄)T (6.1)

A naive solution to this problem is to disregard any kind of position offset from

the point cloud headers. However, this introduces another problem, where if the

seed clouds don’t share the exact same positional offset with the input cloud, they

become misaligned. So instead, a global demean value is getting stored based on the

XYZ offset of the base input cloud, which then gets subtracted from each loaded

point cloud’s offset. This new offset then gets added to the corresponding clouds

XYZ coordinates, essentially leaving the input point cloud in its original position,

and shifting the rest to its coordinate system.

Before writing the results after the processing has been finished, the demeaning

steps are applied again in reverse, shifting back the points to their original locations,

with the original offset values written to the header, keeping them comparable with

the untouched input point clouds.

42

Chapter 7

Results

In this chapter, I’ll demonstrate the results achieved with my methods through

the measured running times and accuracy. The running times were measured in the

following environment:

• Ubuntu 20.04 operating system running in a VirtualBox VM1,

• Intel i5-6600K CPU running at 3.5 GHz,

• 32 GB of RAM (8 GB assigned to VM).

For each measurement, an average of four consecutive runs are shown. The run-

ning times were negatively affected by the virtualized environment, but they are

sufficient to compare the running times across different kinds of input data.

For the calculation of the precision and accuracy measurements equa-

tions 7.1 and 7.2 were used, where TP = true positive, TN = true negative,

FP = false positive and FN = false negative count.

Precision =
TP

TP + FP
(7.1)

Accuracy =
TP + TN

TP + TN + FP + FN
(7.2)

7.0.1 Mast detection

Table 7.1 shows the measured running times of the mast detection pipeline on

the different samples. As the data shows, the running time of the detection scales in

a linear fashion with regards to the length of the section fed to the pipeline.
1Virtual Machine

43

7. Results

Mast detection run times
Number of points Length of section Running time

MÁV-simple 7.3 million 100 metres 3.8524 s
MÁV-long 40.3 million 560 metres 39.3928 s

GYSEV-standard 7.4 million 185 metres 6.6212 s
GYSEV-mixed 7.3 million 188 metres 6.5092 s

Table 7.1: Mast detection pipeline running times on the sample inputs

The next table (7.2) shows the running times of the different stages of the mast

detection pipeline. As visible from these measurements, the first and last stages

of removing unnecessary points and the actual segmentation also scale in a linear

fashion with the size of the inputs. Relative to these, however, the stage for finding

possible mast centroids can take an unexpectedly long time (mainly as seen with

the last two samples).

Detailed run times of mast detection
Removing

unneccessary points
Finding possible
mast centroids Segmenting masts

MÁV-simple 0.9040 s 0.5451 s 2.3295 s
MÁV-long 5.8372 s 13.2667 s 19.6883 s

GYSEV-standard 1.2664 s 4.0845 s 1.1420 s
GYSEV-mixed 1.2919 s 3.8400 s 1.7133 s

Table 7.2: Detailed running times of the mast detection pipeline on the sample
inputs

Further breakdown of this second stage of the mast detection pipeline shown

by Table 7.3 reveals some valuable information. In this table, the two most time-

consuming steps are shown in relation to the overall running time of the centroid

localisation stage.

Detailed run times of mast centroid finding stage
Density
filtering

Centroid
refinement

Complete
stage

Time % of
centroid refinement

MÁV-simple 0.0862 s 0.4117 s 0.5451 s 75.5 %
MÁV-long 0.6738 s 11.5280 s 13.2667 s 86.9 %

GYSEV-standard 3.4337 s 0.6318 s 4.0845 s 15.4 %
GYSEV-mixed 2.7496 s 0.6231 s 3.3840 s 18.4 %

Table 7.3: Detailed running times of the mast centroid localisation stage on the
sample inputs

44

7. Results

As it is visible from the data, the centroid refinement step can take up to 87 %

of the processing time of this stage (see MÁV-simple/-long samples). This is

caused by the refinement process being executed on the complete input cloud, as

only that and the original centroids are available inside the filter due to the current

architecture of the railroad framework. In Section 8.1 on Page 50, I will address

some possible solutions to this, but as the measured running times were found to be

sufficiently quick, these modifications were not implemented.

Accuracy of mast detection
False negatives False positives Precision Accuracy

MÁV-simple 0.62 % 1.55 % 98.45 % 99.99 %
MÁV-long 0.72 % 1.07 % 98.93 % 99.99 %

GYSEV-standard 4.01 % 0.59 % 99.41 % 99.99 %
GYSEV-mixed 5.85 % 6.80 % 93.20 % 99.95 %

Table 7.4: Precision and accuracy of the mast detection pipeline

Finally, Table 7.4 shows the precision and accuracy evaluation of the mast de-

tection pipeline. The mast points were successfully detected for all samples, with

some minor errors. Figure 7.1 shows the detected masts in red on the MÁV-long

sample.

As it is also visible from this data and Figure 7.2, the GYSEV-mixed sample

showed the worst results. This is due to the non-cylindrical masts found in this sam-

ple, one of them also having tensioning weights installed. Even though the pipeline

was not optimized for such cases, it still yields usable results.

Figure 7.1: The detected masts shown on the MÁV-long sample

45

7. Results

Figure 7.2: False negatives (blue) and false positives (red) of the mast detection
results on the GYSEV-mixed sample

7.0.2 Cantilever detection

The cantilever detection pipeline was evaluated on the MÁV-simple and MÁV-

long samples. The table below (7.5) shows the running times of the different steps

of the pipeline, and the accumulated running time.

Cantilever detection run times
Width filter Height filter Cantilever filter Total

MÁV-simple 0.7585 s 0.0366 s 7.3423 s 8.1374 s
MÁV-long 4.4318 s 0.2149 s 55.0550 s 59.7017 s

Table 7.5: Cantilever detection pipeline running times on the sample inputs

The accuracy and precision of the cantilever detection are shown by Table 7.6.

There are some false negatives, but overall the pipeline successfully segments the

points belonging to cantilevers. Figure 7.3 demonstrates the accuracy of the pipeline

visually on the MÁV-simple sample.

Accuracy of cantilever detection
False negatives False positives Precision Accuracy

MÁV-simple 2.76 % 1.64 % 98.36 % 100 %
MÁV-long 4.74 % 1.50 % 98.50 % 100 %

Table 7.6: Precision and accuracy of the cantilever detection pipeline

46

7. Results

Figure 7.3: False negatives (blue) and false positives (red) of the cantilever
detection results on the MÁV-simple sample

Figure 7.4 shows the detected cantilevers in red on the MÁV-long sample.

Figure 7.4: The detected cantilevers shown on the MÁV-long sample

7.0.3 Contact cable stagger checking

The contact cable stagger checking pipeline was evaluated on the MÁV-simple

and MÁV-long samples. The table below (7.7) shows the running times of the

different steps of the pipeline, and the accumulated running time.

47

7. Results

Stagger checking run times
Min-height filter Ransac filter Stagger filter Total

MÁV-simple 0.0176 s 0.0038 s 0.1454 s 0.1667 s
MÁV-long 0.0953 s 0.1194 s 1.8388 s 1.6241 s

Table 7.7: Stagger checking pipeline running times on the sample inputs

Running the stagger checking pipeline on the two samples with the parameters

matching the construction time and class of the section in question (0.4 metres

maximum stagger with a threshold of 3 cm) verified that the stagger on these sections

is within operational limits, with no points being classified as excessively staggering,

and no warning shown for lack of stagger either. Figure 7.5 shows the output of

the algorithm with overly strict parameters (0.2 metres maximum stagger with a

threshold of 0 cm) with the excessively staggering points shown in red. After setting

the parameter for the minimum stagger limit at an overly strict value of 0.35 metres

the warning message about potential lack of stagger was also correctly displayed.

Figure 7.5: Running the stagger checking with overly strict parameters on the
MÁV-long sample

48

Chapter 8

Conclusion

During my work, I made myself familiar with both LiDAR and railway

infrastructure-related technological terms (mast, cantilever segmentation and con-

tact cable stagger detection) to get a better understanding of the goals I aimed to

achieve. I researched existing literature on both traditional- and machine-learning-

based solutions to these problems, and based on this I decided to tackle them with

the traditional methods.

While learning from this information, I also tried diverging from existing so-

lutions, to explore hidden potential in the geometrical relationship between the

different elements of the railway infrastructure. The implemented methods yield

comparable, or even better results to what was shown by other researchers, with

regards to both running time and accuracy. The implemented mast segmentation

pipeline showed an average accuracy of 99.87 %, with an average running time of

4.48 seconds per 100 metres. The cantilever segmentation method yielded 100 %

accurate results, taking 9.34 seconds per 100 metres to run on average. The contact

cable stagger detection solution was able to detect both the lack- and the excess of

contact cable stagger successfully, with an average running time of 0.25 seconds per

100 metres. The running time of these implemented algorithms scales in a linear

fashion with regard to the size of the input clouds.

49

8. Conclusion

8.1 Future work

All of the implemented algorithms yield some false positives and false negatives.

This is most prominent with the mast detection pipeline, especially in the case of

non-cylindrical masts. A better and more precise algorithm could be developed for

detecting these non-cylindrical masts, instead of the currently used, overly simple

method of filtering points within a cylindrical bounding box of their presumed lo-

cation. The speed of this pipeline could be also significantly improved by caching

the already cleaned points outside of the region of interest for the refinement of

candidate centroids or using an Octree data structure to speed up searching in the

original input cloud. Some more, less significant running time improvement could

also be achieved by running the actual mast segmentation stages in parallel for each

candidate centroid.

The cantilever detection pipeline’s speed could also be improved. The main bot-

tleneck is the step where the points in the vicinity of masts are removed. To overcome

this bottleneck, a tight bounding box could be constructed for the individual masts.

Removing the points falling inside these bounding boxes would be much faster than

individually checking the neighbourhood of all mast points.

The stagger checking pipeline could be refined to make detection of lack of stagger

more localised, reporting the exact EOV coordinate of the problematic areas instead

of checking globally on the complete section.

Finally, the railroad tool could be modified to allow for running pipelines in

parallel for multiple consecutive sections, further speeding up the detection of in-

frastructure and error checking for complete datasets.

Acknowledgements

I’m extremely grateful to Máté Cserép for his help as my supervisor. I would like

to express my gratitude to Csaba Bajnóci and Zoltán Németh, the experts at MÁV,

for generously sharing their knowledge and providing valuable information regarding

railway infrastructure-specific questions. I’m also grateful to MÁV for providing the

datasets that were crucial for this work. Additionally, I extend my appreciation to

Judit Knoll and Levente Greczula for taking the time to proofread this thesis and

providing valuable feedback to further improve its quality. Lastly, I would like to

thank my family and my colleagues for their continuous encouragement.

50

Bibliography

[1] Adnan Shaout, Dominic Colella, and S. Awad. “Advanced Driver Assistance

Systems - Past, present and future”. In: 2011 Seventh International Computer

Engineering Conference (ICENCO’2011). 2011. doi: 10.1109/ICENCO.2011.

6153935.

[2] Transport and environment report 2021. [Online; accessed 18. Apr. 2023]. Feb.

2023. url: https://www.eea.europa.eu/publications/transport-and-

environment-report-2021.

[3] UIC. RAILISA statistics, 2021 data. [Online; accessed 18. Apr. 2023]. url:

https://uic-stats.uic.org.

[4] "Eyes" for Autonomous Mobile Robots. [Online; accessed 15. May 2023]. May

2017. url: https://news.panasonic.com/global/stories/805.

[5] J. H. Middleton et al. “Resolution and Accuracy of an Airborne Scanning

Laser System for Beach Surveys”. In: J. Atmos. Oceanic Technol. 30.10 (Oct.

2013). issn: 0739-0572. doi: 10.1175/JTECH-D-12-00174.1.

[6] Siemens presents the world’s first electric railway. [Online; accessed 6. Nov.

2022]. Oct. 2022. url: https://www.siemens.com/global/en/company/

about/history/stories/on-track.html.

[7] Hadas Ádám. “The Effect of Overhead Line and Pantograph Failure for

Railway Operations”. In: MKK 29.2 (Aug. 2019). In Hungarian. issn: 2063-

4986. doi: 10.32562/mkk.2019.2.12.

[8] Catenary Measurements. [Online; accessed 28. Apr. 2023]. Apr. 2023. url:

https://rail-vision.com/infrastructure/overhead-lines/catenary-

measurements.

51

https://doi.org/10.1109/ICENCO.2011.6153935
https://doi.org/10.1109/ICENCO.2011.6153935
https://www.eea.europa.eu/publications/transport-and-environment-report-2021
https://www.eea.europa.eu/publications/transport-and-environment-report-2021
https://uic-stats.uic.org
https://news.panasonic.com/global/stories/805
https://doi.org/10.1175/JTECH-D-12-00174.1
https://www.siemens.com/global/en/company/about/history/stories/on-track.html
https://www.siemens.com/global/en/company/about/history/stories/on-track.html
https://doi.org/10.32562/mkk.2019.2.12
https://rail-vision.com/infrastructure/overhead-lines/catenary-measurements
https://rail-vision.com/infrastructure/overhead-lines/catenary-measurements

BIBLIOGRAPHY

[9] Mostafa Arastounia. “Automated Recognition of Railroad Infrastructure in

Rural Areas from LIDAR Data”. In: Remote Sens. 7.11 (Nov. 2015). issn:

2072-4292. doi: 10.3390/rs71114916.

[10] Elżbieta Pastucha. “Catenary System Detection, Localization and

Classification Using Mobile Scanning Data”. In: Remote Sens. 8.10 (Sept.

2016). issn: 2072-4292. doi: 10.3390/rs8100801.

[11] Yixuan Geng et al. “UAV-LiDAR-Based Measuring Framework for Height and

Stagger of High-Speed Railway Contact Wire”. In: IEEE Trans. Intell. Transp.

Syst. 23.7 (May 2021). issn: 1558-0016. doi: 10.1109/TITS.2021.3071445.

[12] Friderika Mayer. “Powerline tracking and extraction from dense LiDAR point

clouds”. http://hdl.handle.net/10831/56221. MSc thesis. ELTE Eötvös

Loránd University, Faculty of Informatics, 2020.

[13] Máté Cserép, Péter Hudoba, and Zoltán Vincellér. “Robust Railroad Cable

Detection in Rural Areas from MLS Point Clouds”. In: ScholarWorks@UMass

Amherst 18.1 (2018). doi: 10.7275/z46z-xh51.

[14] Alexis Gutiérrez-Fernández et al. “Automatic Extraction of Power Cables

Location in Railways Using Surface LiDAR Systems”. In: Sensors 20.21 (Oct.

2020). issn: 1424-8220. doi: 10.3390/s20216222.

[15] Javier Grandio et al. “Point cloud semantic segmentation of complex railway

environments using deep learning”. In: Automation in Construction 141 (2022).

url: https://doi.org/10.1016/j.autcon.2022.104425.

[16] Md Zahangir Alom et al. “A State-of-the-Art Survey on Deep Learning Theory

and Architectures”. In: Electronics 8.3 (Mar. 2019). issn: 2079-9292. doi: 10.

3390/electronics8030292.

[17] A. Manier et al. “Railway lidar semantic segmentation with axially sym-

metrical convolutional learning”. In: ISPRS Ann. Photogramm. Remote Sens.

Spatial Inf. Sci (2022). url: https://doi.org/10.5194/isprs-annals-V-

2-2022-135-2022.

[18] Xinyi Yu et al. “Real-time Rail Recognition Based on 3D Point Clouds”. In:

Computer Vision and Pattern Recognition (2022). url: https://doi.org/

10.48550/arXiv.2201.02726.

52

https://doi.org/10.3390/rs71114916
https://doi.org/10.3390/rs8100801
https://doi.org/10.1109/TITS.2021.3071445
http://hdl.handle.net/10831/56221
https://doi.org/10.7275/z46z-xh51
https://doi.org/10.3390/s20216222
https://doi.org/10.1016/j.autcon.2022.104425
https://doi.org/10.3390/electronics8030292
https://doi.org/10.3390/electronics8030292
https://doi.org/10.5194/isprs-annals-V-2-2022-135-2022
https://doi.org/10.5194/isprs-annals-V-2-2022-135-2022
https://doi.org/10.48550/arXiv.2201.02726
https://doi.org/10.48550/arXiv.2201.02726

BIBLIOGRAPHY

[19] S. A. Guinard et al. “Fast weakly supervised detection of railway-related infras-

tructures in lidar acquisitions”. In: ISPRS Ann. Photogramm. Remote Sens.

Spatial Inf. Sci (2021). url: http://dx.doi.org/10.5194/isprs-annals-

V-2-2022-135-2022.

[20] Balázs Tábori. “Fragmenting LiDAR point cloud of railway tracks”. In

Hungarian, http : / / hdl . handle . net / 10831 / 77213. MSc thesis. ELTE

Eötvös Loránd University, Faculty of Informatics, 2021.

[21] Adalbert Demján. “Object extraction of rail track from VLS LiDAR data”.

http://hdl.handle.net/10831/56224. MSc thesis. ELTE Eötvös Loránd

University, Faculty of Informatics, 2020.

[22] R. Rusu. “Semantic 3D Object Maps for Everyday Manipulation in Human

Living Environments”. In: KI - Künstliche Intelligenz (2010). url: https:

//mediatum.ub.tum.de/doc/800632/941254.pdf.

53

http://dx.doi.org/10.5194/isprs-annals-V-2-2022-135-2022
http://dx.doi.org/10.5194/isprs-annals-V-2-2022-135-2022
http://hdl.handle.net/10831/77213
http://hdl.handle.net/10831/56224
https://mediatum.ub.tum.de/doc/800632/941254.pdf
https://mediatum.ub.tum.de/doc/800632/941254.pdf

List of Figures

2.1 Principles of LiDAR1 . 5

2.2 The different parts of overhead catenary systems2 7

2.3 Non-cylindrical steel lattice masts . 8

2.4 Stagger of the contact wire viewed from the top3 9

2.5 Catenary diagnostic wagon of the Hungarian State Railways4 10

3.1 The effect of the amount of training data on old machine learning and

deep learning performance.5 . 14

3.2 Feeding unseen data to the network can lead to weak results, like

ground points getting falsely classified as rails6 15

4.1 The setup used for collecting the data 17

4.2 Covered area of the Szabadszállás – Csengőd dataset 18

4.3 The MÁV-simple sample visualized in 3D 19

4.4 The MÁV-long sample visualized in 3D 20

4.5 Cable samples from the Szabadszállás – Csengőd dataset 20

4.6 Covered area of the Szentgotthárd dataset 21

4.7 The GYSEV-standard sample visualized in 3D 22

4.8 The GYSEV-mixed sample visualized in 3D 22

5.1 Overview of the mast segmentation pipeline 24

5.2 Point cloud after width filtering . 25

5.3 Point cloud coloured by density values 26

5.4 The first three steps of finding possible mast centroids 28

5.5 Centroid recalculation . 30

5.6 The actual mast segmentation algorithm 31

5.7 Finding the masts points for the centroids 33

5.8 Cantilever segmentation pipeline . 34

5.9 Finding the cantilever points . 36

54

LIST OF FIGURES

5.10 Stagger checking pipeline . 37

5.11 The filtered contact cable points (red) with the rest of the input points 38

7.1 The detected masts shown on the MÁV-long sample 45

7.2 False negatives (blue) and false positives (red) of the mast detection

results on the GYSEV-mixed sample 46

7.3 False negatives (blue) and false positives (red) of the cantilever de-

tection results on the MÁV-simple sample 47

7.4 The detected cantilevers shown on the MÁV-long sample 47

7.5 Running the stagger checking with overly strict parameters on the

MÁV-long sample . 48

55

List of Tables

6.1 The newly implemented filters . 40

6.2 The modified filters . 40

7.1 Mast detection pipeline running times on the sample inputs 44

7.2 Detailed running times of the mast detection pipeline on the sample

inputs . 44

7.3 Detailed running times of the mast centroid localisation stage on the

sample inputs . 44

7.4 Precision and accuracy of the mast detection pipeline 45

7.5 Cantilever detection pipeline running times on the sample inputs . . . 46

7.6 Precision and accuracy of the cantilever detection pipeline 46

7.7 Stagger checking pipeline running times on the sample inputs 48

56

	Introduction
	Technological background
	LiDAR
	Railway catenary systems
	Parts of the catenary
	Diagnostics

	Literature
	Traditional railway LiDAR data processing
	Wires
	Masts
	Cantilevers
	Conclusion

	Artificial intelligence in railway LiDAR data processing
	Benefits
	Weaknesses
	Recent findings
	Conclusion

	Datasets
	Data recording
	Szabadszállás – Csengőd dataset
	Sample: MÁV-simple
	Sample: MÁV-long
	Cable stagger detection and cantilever segmentation samples

	Szentgotthárd dataset
	Sample: GYSEV-standard
	Sample: GYSEV-mixed

	Methodology
	Mast segmentation
	Removing unnecessary points
	Finding possible mast centroids
	Segmenting masts

	Cantilever segmentation
	Contact cable stagger checking

	Implementation
	Code Availability
	About the railroad framework
	New and modified filters
	Modifications in the framework
	Handling multiple seed clouds
	Keeping a reference to the original input cloud
	Point cloud demeaning

	Results
	Mast detection
	Cantilever detection
	Contact cable stagger checking

	Conclusion
	Future work

	Bibliography
	List of Figures
	List of Tables

