
Eötvös Loránd University

Faculty of Informatics

Dept. of Software Technology and Methodology

Automatic rail tie recognition and error

detection using LiDAR point clouds

Supervisor: Author:
Cserép Máté Ertl Dénes
Assistant Lecturer Computer Science MSc

Budapest, 2023

Contents

1 Introduction 4

2 Background 5

2.1 LiDAR technology . 5

2.2 Methods of measurement . 5

2.2.1 Aerial Laser Scanning . 6

2.2.2 Mobile Laser Scanning . 6

2.2.3 Terrestrial Laser Scanning . 7

2.3 Rail ties . 8

2.4 Usage of LiDAR in railways . 8

3 Literature review 9

3.1 Extraction of railroad objects from high-resolution ALS data 9

3.1.1 Usage of an adapted RANSAC algorithm 9

3.1.2 Rail object detection using 2D cuts 10

3.2 Rail object detection using height deviation 10

3.3 Rail object detection using eigendecomposition 11

3.4 Rail tie condition monitoring using ultrasonic ranging 12

3.5 Machine vision for the inspection of wooden rail ties 12

3.6 Segmentation of railway tracks using deep learning 13

3.7 Conclusions . 13

4 Dataset 15

5 Metrics of surface analysis 17

5.1 Normal change rate . 17

5.1.1 Calculation of the covariance matrix 17

5.1.2 Eigendecomposition of the covariance matrix 18

5.1.3 Calculating normal change rate from eigenvalues 18

CONTENTS

5.2 Roughness . 19

5.2.1 Calculating Least Squares Plane 19

5.2.2 Calculating point to plane distance 20

6 Methodology 21

6.1 Shifting the points . 22

6.2 Partitioning the 3-dimensional space 22

6.3 Locating rail tracks . 23

6.3.1 Filter based on local height 23

6.3.2 Filter based on normal change rate 25

6.3.3 Filter based on roughness . 26

6.3.4 Filter based on outliers . 27

6.4 Extracting the trackbed . 28

6.4.1 Fitting convex hull to rail tracks 28

6.4.2 Filter points inside the convex hull 28

6.4.3 Remove rail tracks . 28

6.5 Extracting rail ties . 29

6.5.1 Filter based on normal change rate 29

6.5.2 Filter based on outliers . 30

6.5.3 Cluster points with DBSCAN 30

6.5.4 Connect clusters . 32

6.5.5 Fit oriented bounding box to grouped clusters 35

6.5.6 Extract points inside oriented bounding box 36

6.6 Fault detection . 37

6.6.1 Find rail ties covered by too much track ballast 37

6.6.2 Find sunk rail ties . 39

7 Implementation 40

7.1 Contribution . 40

7.2 Code availability . 41

7.3 Configuration availability . 41

8 Results and conclusion 42

8.1 Multithreading . 42

8.2 Rail tie segmentation results . 43

CONTENTS

8.3 Conclusion . 47

9 Future work 49

9.1 Pattern recognition for missing rail tie detection 49

9.2 Improved edge detection of rail ties 49

9.3 GPU support for massively parallel computing 49

10 Acknowledgements 51

Bibliography 52

List of Figures 55

List of Tables 56

Chapter 1

Introduction

Rail ties are vital parts of the railroad infrastructure, as they both bear the weight

of the rail tracks and support the trains passing over them. Over the years, this

mechanical stress combined with the alternating weather conditions can deteriorate

the condition of the rail ties, and consequently, the rail tracks can get damaged, too.

Ignoring these defects can lead to serious accidents in the long term. To prevent

this, railway companies perform regular checkups on the quality of the rail ties.

These inspections consume an immense amount of human and financial resources.

The main goal of my research is the precise and automatic detection of defects with

the help of point cloud processing algorithms. Identifying these discrepancies could

significantly reduce the amount of resources spent on the manual examination of

railroads.

The methodology presented in this thesis demonstrates great potential in ac-

curately detecting rail ties, as well as identifying faults according to user-defined

threshold values. For the testing datasets, which in total cover an approximately

250 meters long section of railway, the proposed method successfully identified rail

ties with an accuracy of 98.8% having 0% false positives and 1.2% false negatives.

The algorithm was implemented with a strong focus on configurability and scala-

bility. This ensures that the system can be easily adapted and customized to suit

different requirements and scenarios.

The original dataset, which was provided by Hungarian State Railways (in

Hungarian: MÁV Magyar Államvasutak Zrt.) covers approximately 18.5 km long

and 130 m wide area of Hungarian rural railroad.

4

Chapter 2

Background

2.1 LiDAR technology

LiDAR, which stands for Light Detection and Ranging is a remote sensing tech-

nology that uses lasers to measure the distance between the sensor and the surround-

ing objects. This technology works by emitting a pulse of laser light and measuring

the time it takes for the light to reflect off an object and return to the sensor. By

repeating this process rapidly and collecting the reflected light data, LiDAR systems

can generate a 3D point cloud of the scanned area with high accuracy and precision.

LiDAR has numerous applications in various fields, including topography and ter-

rain mapping, urban planning, forestry, archaeology, and autonomous vehicles. Due

to its ability to scan areas quickly and accurately, LiDAR has numerous advantages

over traditional surveying methods. However, LiDAR systems can be expensive and

require significant technical expertise to analyze the data. Despite these challenges,

LiDAR is becoming increasingly popular due to its versatility and efficiency.

2.2 Methods of measurement

Regarding LiDAR, the following three main data collection methods can be dis-

tinguished:

1. Aerial Laser Scanning (ALS)

2. Mobile Laser Scanning (MLS)

3. Terrestrial Laser Scanning (TLS)

5

2. Background

2.2.1 Aerial Laser Scanning

Aerial Laser Scanning captures 3D data of the Earth’s surface using LiDAR sen-

sors mounted to an aircraft. ALS is commonly used to create detailed and accurate

digital elevation models (DEMs) and terrain maps used in various fields, including

geology, hydrology, and cartography.

Figure 2.1: Aerial Laser Scanning visualized1

2.2.2 Mobile Laser Scanning

Mobile Laser Scanning captures 3D data of the environment using LiDAR sensors

mounted on vehicles, such as cars or trains. MLS is commonly used to map out

structures in urban areas. It can also aid in managing the infrastructure of a city by

monitoring changes in buildings and roads.

1Aravind Harikumar, PhD thesis, http://eprints-phd.biblio.unitn.it/3782/1/PhD_
Thesis_Harikumar.pdf

6

http://eprints-phd.biblio.unitn.it/3782/1/PhD_Thesis_Harikumar.pdf
http://eprints-phd.biblio.unitn.it/3782/1/PhD_Thesis_Harikumar.pdf

2. Background

Figure 2.2: Mobile Laser Scanning visualized2

2.2.3 Terrestrial Laser Scanning

Terrestrial Laser Scanning captures 3D data of an object or environment using

LiDAR sensors mounted on a tripod. TLS is commonly used in architecture and

construction to create 3D models of buildings.

Figure 2.3: Terrestrial Laser Scanning visualized3

2Hanyun Wang et al.,2012 International Conference on Computer Vision in Remote Sensing
-https://ieeexplore.ieee.org/document/6421248

3https://www.gib.uni-bonn.de/research/correlations-at-terrestrial-laser-scanning/
correlations-at-terrestrial-laser-scanning

7

https://ieeexplore.ieee.org/document/6421248
https://www.gib.uni-bonn.de/research/correlations-at-terrestrial-laser-scanning/correlations-at-terrestrial-laser-scanning
https://www.gib.uni-bonn.de/research/correlations-at-terrestrial-laser-scanning/correlations-at-terrestrial-laser-scanning

2. Background

2.3 Rail ties

Since this paper focuses on detecting rail ties, it is essential to understand their

importance and basic functionality.

Rail ties, also known as railroad ties or sleepers (rail ties in this paper), are

rectangular wooden or concrete components used to support railway tracks. They

are placed perpendicular to the rails, which are secured to them with spikes or

other fasteners. They are essential components of the railway infrastructure, as they

provide stability and support for the rails, ensuring the safety and efficiency of rail

transportation.

Figure 2.4: Concrete rail ties4

2.4 Usage of LiDAR in railways

Due to its high accuracy and ability to create detailed point clouds, the tech-

nology is widely used by many countries around the world to maintain railway

infrastructure. Inspected parts of the infrastructure are for example tracks, sleepers,

cables, switches, and signals. These data help to identify anomalies, such as track

misalignment and defects, enabling timely maintenance and ensuring safe opera-

tions.

4https://lancemindheim.com/wp-content/uploads/2015/09/ConcTiesA.jpg

8

https://lancemindheim.com/wp-content/uploads/2015/09/ConcTiesA.jpg

Chapter 3

Literature review

The purpose of chapter is to provide a comprehensive overview of the literature

and research on the already existing methods of railway infrastructure segmentation.

Since the available research on rail tie segmentation is relatively scarce compared

to other rail infrastructure segmentation, the primary objective is to identify pre-

existing methodologies that can be adapted for rail tie segmentation. Based on

the related research, it was concluded that a highly accurate rail track detection

algorithm is required to ensure reliable rail tie detection. Thus, the review also

covers multiple papers on rail track segmentation.

3.1 Extraction of railroad objects from high-

resolution ALS data

This article is a collaborative effort written by Neubert et al.[1]. It proposed two

methodologies for detecting rail tracks.

3.1.1 Usage of an adapted RANSAC algorithm

With this method, the first step is to filter the points based on their height from

the ground. This allows the algorithm to only consider points in the height of the

rails. After this, a second filter is applied where the deviation in the height of points

relative to the height of neighboring points is examined. The new point cloud will

only contain points that fall within this interval.

9

3. Literature review

RANSAC (Random Sample Consensus) is a robust algorithm used for fitting

models to data that may contain outliers. It was first proposed by Fischler and

Bolles [2].

The goal of this method is to use RANSAC to identify simple geometries in the

dataset, such as lines and curves. Firstly, the data is fragmented into multiple parts

(tiles) along the trajectory of the rail tracks. In each tile, the RANSAC method is

used to identify the previously mentioned geometries. Finally, the separated tiles

are connected back together. During this process, a curve-fitting function based on

the Least Squares Method is applied. As a result, a curve fitted to the rail tracks is

computed.

3.1.2 Rail object detection using 2D cuts

A knowledge-based classification method was also designed where 2D cuts

(stripes) are taken from the dataset perpendicular to the trajectory of the rail. This

created a so-called 2D profile of the stripes. These stripes are later compared to a

reference track profile. In order to follow the trajectory of the tracks, the following

conditions were derived from the typical geometry of the area surrounding the track

bed:

1. The track bed around the track is nearly horizontal and flat.

2. The railway loading gauge is free of objects.

3. The standard track gauge is known, meaning that rail tracks are always within

a fixed distance of each other.

In the last step of the hierarchical analysis, the local terrain model is compared to

the reference profile. If the second condition is fulfilled this comparison is performed

for all areas. The results are the points that represent the track axis.

3.2 Rail object detection using height deviation

This method was published by Mostafa Arastounia in 2015 [3]. The classification

of points is based on their local neighborhood.

10

3. Literature review

Given the 3D points p and q. Point p belongs to the neighborhood of q if their

Euclidean distance is smaller or equal to a given radius r:

√
(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2 ≤ r (3.1)

Since finding all neighbors in a dense point cloud can be computationally de-

manding, a K-dimensional tree data structure is constructed to accelerate this pro-

cess.

The objects are detected in the following order:

1. Recognition of the trackbed.

2. Recognition of the rail tracks.

3. Recognition of the power cables.

4. Recognition of the masts and cantilevers.

In case of rail tie detection, only the first and the second steps are significant.

The points of the trackbed are classified based on the standard deviation of their

neighborhood. The points of the trackbed have the smallest height variation to

prevent the trains from colliding with objects between the rail tracks. After finding

the trackbed, the same method can be used to find the rail tracks by detecting

peaks in the standard deviation of height. Finally, the identified rail tracks are

clustered and the accidentally disconnected clusters belonging to the same rail track

are connected with a region-growing algorithm.

3.3 Rail object detection using eigendecomposition

Mostafa Arastounia has also published this methodology in 2017 [4], improving

on the shortcomings of the earlier approaches. Previous methods assumed that the

altitude of the area is roughly constant. This can cause problems in mountainous

areas. The new method is more universal, since it uses eigendecomposition to identify

rail track points. Points that are close to the ground are selected as rail track points.

Since this method only uses local neighborhoods to classify rail tracks, it does not

depend on the surface variation. False positives are filtered by applying a 2D Hough

11

3. Literature review

transformation to the rail points, since it detects points lying on the same line and

also computes the parameters of the respective line.

It is worth mentioning that the concurrent growth of rail tracks significantly

enhances the speed of the method. Concurrency in the methodology used in the

current paper was heavily inspired by this work.

3.4 Rail tie condition monitoring using ultrasonic

ranging

The following method was proposed by Datta et al.[5]. Instead of LiDAR, ultra-

sonic sensors were used to measure the time-of-flight from the sensor mounted to

the bottom of the rail carriage. The aim of the method was to measure the nega-

tive bending of rail ties (tension on the top surface) under train loads. The results

obtained during this preliminary study indicated that the precision and accuracy

are adequate to measure these kinds of phenomena. The aforementioned results are

important for the current research, as rail ties are occasionally elevated from the

track ballast by only a few centimeters. Since LiDAR is considered more accurate

[6] than ultrasound, it is safe to assume that accuracy will not be an issue for rail

tie detection.

3.5 Machine vision for the inspection of wooden rail

ties

In the following thesis, an error detection method for wooden rail ties is proposed

by Sajja Pasha Mohhamad [7]. The method uses Support Vector Machines (SVMs)

for pattern recognition to classify rail ties into good and bad classes.

The method uses the following features for classification:

• Number of cracks

• Length of the cracks

• Width of the cracks

• Exposed length of the fastener bolts/screws

12

3. Literature review

The features were extracted from grayscale images with the use of Canny Edge

Detection [8] for the exposed length of the fasteners and Morphological Skeleton

Operation for the cracks of the rail ties.

In the classification of 150 rail ties, the error rate was calculated to be 4.67%, out

of which false positives accounted for 0% and false negatives accounted for 4.67%.

The results suggest that with suitable features and training data, similar outcomes

could be obtained for concrete rail ties.

3.6 Segmentation of railway tracks using deep

learning

This article from Piotr Bojarczak and Waldemar Nowakowski [9] proposes a more

universal method for the segmentation of the surface of railway tracks using deep

neural networks. This method uses image-based data instead of LiDAR-based data

and a Fully Convolutional Neural Network with 8 times upsampling (FCN-8) to

detect railway track elements. The network was able to identify a wide variety of

rail elements including the rail track, wood and concrete ties, and 4 different types

of fasteners with great accuracy. In this research, the most important aspects are

accuracy and precision of concrete rail tie detection. The neural network achieved

a pixel accuracy of 96.5% and a precision of 90.5%. These numbers seem more

reliable than the ones in the previously mentioned paper, considering the fact that

the training used 5000 examples of concrete ties compared to the 150 wooden ties

in the work of Sajja Pasha Mohhamad [7].

3.7 Conclusions

As it was mentioned at the beginning of this chapter, reliable detection of rail

tracks is a prerequisite for the implementation of rail tie detection. The performance

of the reviewed rail track segmentation methods is shown in Table 3.1 below.

Upon examination of each method, it was concluded that Arastounia’s 2017

method is the most suitable for the needs of the current research due to its great

precision and accuracy combined with its relatively low sensitivity towards height

variations in comparison to other methodologies.

13

3. Literature review

Presision% Accuracy%
Neubert et al. - RANSAC >90% -
Neubert et al. - 2D cuts >90% -
Arastounia 2015 97.1 96.4
Arastounia 2017 97.4 97.5

Table 3.1: The accuracy and precision of the examined methods of track detection

For the rail tie detection, the examined methods were mostly based on raster data

except for the work of Datta et al. where ultrasonic ranging was used. Because of the

lack of research on LiDAR-based data, it is irrelevant to compare the performance

of this technology to the image-based methods. However, it is important to note

that the explored methods imply that similarly precise and accurate results can be

achieved with the dataset available to this research.

14

Chapter 4

Dataset

The datasets used in the current research were provided by the Hungarian State

Railways. Data collection was carried out via a Riegl VMX-450 high-density mobile

mapping system that was installed on a railway vehicle, traveling at a velocity of 60

km/h. The sensors are capable of producing up to 1.1 million points per second with

an average error of approximately 3 millimeters. The dataset contains approximately

1.54 ∗ 109 points and covers about 18.5 km long and 130 m wide area of Hungarian

rural railroad. For this research, 8 different samples were taken from different parts

of the dataset (Table 4.1). These samples are divided into 2 groups based on the

amount of track ballast located on the surface of the rail ties.

There are two main reasons behind this grouping:

• Rail ties that are covered by a greater amount of track ballast have a higher

chance of having or developing defects in the future.

• Detecting rail ties that are covered by track ballast is challenging, testing the

method on this type of data is necessary.

As a preprocessing step, the wider surroundings of the rail tracks were cropped

around the rail tracks (Figure 4.1). At present, this step is carried out manually,

however, automating this process has the potential to be a valuable improvement in

the future. Chapter 5 provides a detailed discussion about the necessity of this step.

15

4. Dataset

Total No. points No. points after cropping Section lenght in meters
1 1,871,224 492,644 24
2 1,945,590 419,848 26
3 3,168,634 812,957 52
4 1,084,746 300,421 18
5 950,613 250,798 14
6 2,665,050 651,452 38
7 2,289,283 643,285 33
8 1,231,579 324,668 20

Table 4.1: The datasets used for testing

(a) Sample with high vegetation before
cropping

(b) Sample with high vegetation after
cropping

(c) Sample with low vegetation before
cropping

(d) Sample with low vegetation after
cropping

Figure 4.1: Original and cropped samples with different amounts of vegetation

16

Chapter 5

Metrics of surface analysis

Before delving into the topic further, it is necessary to clarify a set of terms.

The terminology used in this work was partly sourced from CloudCompare1.

CloudCompare is a freely available software designed for editing, analyzing, and

comparing 3D point clouds and meshes.

5.1 Normal change rate

This metric was taken from the surface analyzing tools of CloudCompare. Normal

change rate is a real number greater or equal to zero. It represents the rate of change

of a surface. The process of calculating the value of normal change rate for a point

is the following:

5.1.1 Calculation of the covariance matrix

First, covariance matrix C is constructed.

C =

V ar(x) Cov(x, y) Cov(x, z)

Cov(x, y) V ar(y) Cov(y, z)

Cov(x, z) Cov(y, z) V ar(z)

 (5.1)

where

V ar(a) =

∑n
i=1(ai − a)2

n− 1
(5.2)

1https://www.danielgm.net/cc/

17

https://www.danielgm.net/cc/

5. Metrics of surface analysis

and

Cov(a, b) =

∑n
i=1(ai − a)(bi − b)

n− 1
(5.3)

with n representing the number of neighbors contained in the neighborhood given

by Equation 3.1.

5.1.2 Eigendecomposition of the covariance matrix

Following the computation of the covariance matrix, the eigenvalues and eigenvectors

are determined by solving the equation below:

CV = λV (5.4)

Rearranging the terms gives the following equation:

(C − λI)V = 0 (5.5)

therefore

det(C − λI) = 0 (5.6)

where C is the covariance matrix, V is the matrix of the eigenvectors, λ representing

the matrix of eigenvalues, and I being the identity matrix.

5.1.3 Calculating normal change rate from eigenvalues

After obtaining the 3 eigenvalues of the covariance matrix, the normal change rate

is calculated in the following way:

γ =
min1≤i≤3 |λi|∑3

i=1 |λi|
(5.7)

where λi represents the i-th eigenvalue and γ represents the normal change rate.

The code implementation of this calculation can be found in the source code of

CloudCompare.

18

https://github.com/CloudCompare/CCCoreLib/blob/master/src/Neighbourhood.cpp#L992
https://github.com/CloudCompare/CCCoreLib/blob/master/src/Neighbourhood.cpp#L992

5. Metrics of surface analysis

It is clearly visible in Figure 5.1a that smoother surfaces like rail tracks and ties

have a lower normal change rate value than the track ballast around them.

(a) Normal change rate calculated for each
point in the point cloud

(b) Distribution of normal change rate values
with neighborhood radius of 3 cm

5.2 Roughness

Roughness is another metric taken from the toolset of CloudCompare. The rough-

ness value of a point is defined as the Euclidean distance from the least-squares fitted

plane of its local neighborhood. The process of calculating roughness is the following:

5.2.1 Calculating Least Squares Plane

Given n 3D data points {(x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn)}, a 3x3 symmetric

matrix A is computed with the following entries:

A =

∑n

i=1 x
2
i

∑n
i=1 xi ∗ yi

∑n
i=1 xi∑n

i=1 xi ∗ yi
∑n

i=1 y
2
i

∑n
i=1 yi∑n

i=1 xi

∑n
i=1 yi n

 (5.8)

After this a 3-dimensional vector b is computed with the following entries:

b =

∑n

i=1 xi ∗ zi∑n
i=1 yi ∗ zi∑n

i=1 zi

 (5.9)

19

5. Metrics of surface analysis

After this, the Least Squares Plane is determined by solving the following equation:

Ax = b (5.10)

Where A is the matrix from Equation 5.8 and b is the vector from Equation 5.9.

5.2.2 Calculating point to plane distance

Given point (x0, y0, z0) and a plane given by the equation Ax + By + Cz +D = 0,

the distance of the point and plane is given by the following formula:

d =
|Ax0 +By0 + Cz0 +D|√

A2 +B2 + C2
(5.11)

Roughness value is especially useful when identifying rail tracks as clearly shown

in Figure 5.2a.

(a) Roughness calculated for each point in
the point cloud

(b) Distribution of roughness values with
neighborhood radius of 25 cm

20

Chapter 6

Methodology

The following chapter will examine the algorithm developed for rail tie detection

in detail. The algorithm draws inspiration from Arastounia’s proposed algorithms

from 2015[3] and 2017[4] and introduces new methods for railway infrastructure

segmentation as well. This chapter will provide a thorough overview of the algorithm

by describing each step, beginning with a broad overview and gradually delving

deeper into specific parts of the algorithm.

Figure 6.1: Flowchart of the algorithm

21

6. Methodology

6.1 Shifting the points

Since this dataset is georeferenced, the points can have coordinates with magni-

tudes on the order of 105. To ensure the best precision, the amount of floating-point

error propagation induced by these georeferenced coordinates needs to be reduced.

The easiest way to achieve this is by moving the entire point cloud closer to the

origin. This can be done the following way:

Given n 3-dimensional data points in the point cloud represented by

{(x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn)}. Taking the components of the first point in

the point cloud, a shift vector −→v is constructed:

−→v =

x1

y1

z1

 (6.1)

Using shift vector −→v , function f is defined as below:

f(x, y, z) = (x−−→v x, y −−→v y, z −−→v z) (6.2)

By applying this function to each point, a shifted point cloud represented by S =

{f(x1, y1, z1), f(x2, y2, z2), ..., f(xn, yn, zn)} is obtained.

It is important to mention that shift vector −→v is preserved throughout the com-

putations. After every computation is finished, the points are shifted back to their

original positions. By doing this, georeferencing data is retained.

6.2 Partitioning the 3-dimensional space

In order to find the local neighborhood of a point, a naive algorithm would have

a time complexity of O(n2) where n is the number of points in the point cloud. Since

the point cloud is dense with millions of points, this time complexity is undesirable.

To accelerate this process, an octree [10] is used. An octree is a tree data structure

used to represent a 3-dimensional space by recursively dividing it into eight octants.

Each octant represents a smaller portion of space (Figure 6.2). This data structure is

22

6. Methodology

utilized in the upcoming sections of this chapter when referring to the computation

of the local neighborhood of a point.

Figure 6.2: Octree data structure visualized 1

6.3 Locating rail tracks

The scope of this phase is to locate rail tracks. This data will later be used to

extract the trackbed where most of the rail ties are located. Note, that in this paper,

the term trackbed only refers to the area located between the rail tracks.

6.3.1 Filter based on local height

In the first step, points that are too far from the ground plane are filtered. This

is achieved similarly to the roughness value calculation discussed in Section 5.2.

The only difference is that the neighborhood is calculated by finding points inside

a bounding box instead of a sphere. The bounding box is defined by a center point

as well as a minimum and maximum point. The minimum and maximum points are

calculated as follows:

1WhiteTimberwolf - https://commons.wikimedia.org/wiki/File:Octree2.svg

23

https://commons.wikimedia.org/wiki/File:Octree2.svg

6. Methodology

Given a center point c, a side length of l, and n 3D data points in the point cloud

P = {(x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn)} (Figure 6.3)

min =

c1 − l

2

c2 − l
2

min1≤i≤n Pi3

 max =

c1 +

l
2

c2 +
l
2

max1≤i≤n Pi3

 (6.3)

This process is equivalent to projecting the point cloud to the XY plane and taking

every point inside a square with center point c and a side length of l.

Figure 6.3: Bounding box visualized

After this, the distance to the least-squares fitted plane is calculated the same

way as discussed in Section 5.2. In the current algorithm, l parameter is set to 15

cm, and the threshold distance from the fitted plane to 0.5 meters. In Figure 6.4,

the removal of the catenary cable is clearly visible.

24

6. Methodology

Figure 6.4: Point cloud before and after local height based filtering

6.3.2 Filter based on normal change rate

After filtering by height, the next step is filtering by normal change rate (Section

5.1). For this algorithm, 0.05 was found to be a suitable threshold value with a

local neighborhood radius of 3 cm. Every point with a bigger normal change rate

is filtered out from the point cloud. By applying this filter, most of the ballast is

removed and only the rail tracks and the rail ties remain (Figure 6.5).

It is worth mentioning that an estimation mechanism for the radius parameter is

also implemented. The key idea is that a certain number of points is needed for the

normal change rate filter to work reliably. The algorithm uses an iterative method

with binary search to approximate a radius where the mean number of points inside

the radius is relatively close to this desired number.

The closeness is defined in the following way:

Given a positive real number desired representing the desired number of mean

neighbors and a positive real number current representing the estimation of the lat-

est iteration. The two numbers are considered close enough if the following condition

is satisfied:
|desired− current| < ε (6.4)

The execution of a single iteration is the following:

1. Take the radius and the mean number of neighbors calculated in the last

approximation. If this is the first iteration, use the initial radius to calculate

25

6. Methodology

this data.

2. If the approximation is good enough (Equation 6.4), the algorithm is finished.

Otherwise, increase or decrease the radius by a step (equals to half of the initial

radius by default), based on whether the current approximation is smaller or

bigger than the desired one. In order to make the approximation converge, the

step variable is divided by two in every iteration.

3. Take n samples with the new radius and calculate the mean number of neigh-

bors.

4. If the maximum number of iterations is reached, the algorithm is terminated,

and the best radius estimation is returned.

Since the distribution of the points inside the point cloud is roughly uniform, it

is safe to assume that the obtained radius will produce valid results for the entire

point cloud.

Figure 6.5: Point cloud before and after normal change rate filtering

6.3.3 Filter based on roughness

After obtaining the normal change rate filtered cloud, the rail tracks must be

found. The rail tracks will be extracted by filtering based on the roughness value

of the points. Points smaller than the threshold value of 0.1 will be removed. The

radius used for the filtering is set to 50 cm. After applying the filter, only the rail

tracks remain (Figure 6.6).

26

6. Methodology

Figure 6.6: Point cloud before and after roughness-based filtering

After a thorough examination, it can be concluded that applying the roughness

filter directly to the original cloud would yield similar results to those achieved by

combining filtering based on normal change rate and roughness. The reason for this

extra step comes from the different radius parameters used by the filters. Since

normal change rate provides reliable results with a radius of only 3 cm compared to

the 50 cm needed for roughness, the time complexity can be considerably reduced

without significant loss of data (Figure 6.7).

9Normal change rate

134Roughness

21Normal change rate + roughness

0 20 40 60 80 100 120 140 160
seconds

Figure 6.7: Filtering runtimes for approximately 800,000 points

6.3.4 Filter based on outliers

As a last step before the next phase, outliers are removed. In this context, outliers

are points where the number of neighbors for a radius is less than a predefined

threshold value. The radius, in this case, is 10 cm with a threshold of 16 points.

This filter is essential before fitting a convex hull. Without this step, points outside

the trackbed would also be included.

27

6. Methodology

Figure 6.8: Point cloud before and after outlier-based filtering

6.4 Extracting the trackbed

In this phase, the trackbed is extracted from the point cloud using the rail track

points obtained in Section 6.3.

6.4.1 Fitting convex hull to rail tracks

To find the track bed, the first step is to fit a convex hull [11] to the rail tracks.

In 3 dimensions, a convex hull is the smallest convex polyhedron that contains all

given points in a set.

6.4.2 Filter points inside the convex hull

After the construction of the convex hull, the original input cloud is used with

the vertices of the hull to extract the points. This newly created cloud still contains

the rail tracks, hence they still need to be removed.

6.4.3 Remove rail tracks

The process of removing the rail tracks can be accomplished easily. Given that

the points of the rail tracks form a subset of the previously extracted point cloud

(Section 6.4.2), computing the difference between the two point clouds will return

the points that need to be removed. To compute the difference, it is necessary to

determine the criteria for considering two points equal. In this case, two points are

considered equal if their Euclidean distance (Equation 3.1) is less than 5 cm. This

28

6. Methodology

distance helps to avoid accidentally including parts of the rail tracks, which can

reduce the reliability of the next phase. In Figure 6.9 the result of this process is

shown with the black area representing the track bed.

Figure 6.9: Point cloud after removing the rail tracks

6.5 Extracting rail ties

During this phase, the extraction of rail ties is performed on the trackbed ob-

tained in Section 6.4. The filters utilized in this phase have been used in earlier

stages of the process, thus they will only be discussed briefly.

6.5.1 Filter based on normal change rate

Similarly to Section 5.1, the points of the trackbed are filtered based on normal

change rate, with the difference of using a threshold value closer to zero. Instead of

0.05 the new threshold is only 0.025. Through empirical observations, it has been

determined that this new threshold reduces noise while preserving sufficient amount

of data to ensure the reliable detection of rail ties. An observation that can be made

by examining both Figure 6.10a and 6.10b is the consistent absence of the middle

portion of the rail ties. This phenomenon can be attributed to the design of concrete

ties, which incorporates a slight curvature instead of a completely flat surface (see

on Figure 2.4). This curve allows the ties to better resist lateral forces generated by

train movements.

29

6. Methodology

(a) Trackbed filtered with normal change
rate threshold of 0.05

(b) Trackbed filtered with normal change
rate threshold of 0.025

6.5.2 Filter based on outliers

In this step, outliers are removed the same way as in Section 6.3.4, which ensures

a clearer separation between different rail ties.

6.5.3 Cluster points with DBSCAN

After filtering the outliers, clustering can begin. After considering multiple dif-

ferent clustering methods, it was determined that DBSCAN (density-based spatial

clustering of applications with noise) [12] is the best choice for this type of data.

One of the main reasons for this decision is that DBSCAN does not require the

number of clusters to be predefined and can discover clusters with arbitrary shapes.

Moreover, the algorithm effectively handles noise by identifying and treating outliers

separately. This makes it suitable for rail tie detection.

The basic workings of the algorithm are the following:

1. Before starting the computation, the algorithm requires two parameters: ep-

silon (ε) and minimum points (min_points). Epsilon determines the radius

around a data point, while min_points specifies the minimum number of

points within that radius for a point to be considered a core point.

2. For each data point in the dataset, the algorithm calculates the number of

neighboring points within the radius of ε. If this number is greater or equal to

30

6. Methodology

min_points, the point is classified as a core point. Otherwise, it is considered

either a border point or an outlier.

3. Starting with a core point, the algorithm explores its neighborhood and recur-

sively finds all reachable core points. A point is considered reachable if it can

be reached through a series of core points within the ε radius.

4. The algorithm forms a cluster by connecting reachable points. It iterates

through the core points, expanding the cluster by including their reachable

points. This process continues until there are no more reachable points.

5. Border points that are not reachable from any core point are assigned to the

nearest cluster if they fall within their ε radius. Otherwise, they are classified

as outliers.

6. Any remaining unassigned points are labeled as outliers, since they do not

meet the criteria of being core or border points.

In this case, the minimum number of points was set to 16 while epsilon was 3

cm. After running the algorithm, the clusters are created as expected. Generally,

a rail tie consists of two separate clusters (Figure 6.11) because of the curvature

discussed in Section 6.5.1.

Figure 6.11: Clusters computed with DBSCAN

31

6. Methodology

6.5.4 Connect clusters

To group the clusters accurately, it is necessary to compute multiple vectors for

each cluster. These vectors visible in Figure 6.12 describe the expected orientation

of the rail tie closest to the cluster.

Figure 6.12: Vectors used to describe the orientation of rail ties

Compute surface normal vectors

Firstly, a normal vector of the surface is estimated for every cluster. This is done

by fitting a plane to the cluster and its neighboring clusters within a 1-meter radius

(Section 5.2.1). After calculating the equation of the plane, taking its coefficients as

a vector and normalizing them will yield the normal vector of the plane.

Compute rail track direction

Secondly, the direction of the rail track is computed for each cluster. This is done

by taking the neighboring clusters in a 5-meter radius and calculating a best-fitting

line with RANSAC. Following this, the direction vector of the line is obtained and

normalized.

32

6. Methodology

Compute cluster centroids

Thirdly, the centroid of each cluster is computed. Given the n data points

{(x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn)} of a cluster, centroid c is obtained by cal-

culating the mean value for each dimension of the data (Equation 6.5).

c =

∑n

1 xn

n∑n
1 yn
n∑n
1 zn
n

 (6.5)

Compute rail tie direction

Lastly, the rail tie direction can be easily derived using the normal vector and

the rail track direction vector associated with the cluster. The idea is based on the

assumption that rail ties are always oriented perpendicular to rail tracks.

Given a normal vector represented by −→n and a rail track direction vector represented

by −→s . Since −→n and −→s are approximately perpendicular, a third vector −→t orthogonal

to both of them can be constructed by taking their cross product:

−→
t = −→n ×−→s (6.6)

This new vector −→t represents the direction vector of the rail ties near the examined

cluster. Given that both −→n and −→s are approximations, it is important to note that

resultant vector −→t can possess minor imprecisions. However, for the purpose of rail

tie detection, this error is considered insignificant.

Estimate rail tie width

As an additional step, the algorithm provides the option to estimate the width

of the rail ties before attempting to connect the clusters. This can be useful because

the specific requirements for rail tie width may vary depending on the particular

railway system, geographic location, and engineering specifications.

The process of estimating rail tie width is the following:

1. The algorithm sorts the clusters in descending order based on the number of

points.

33

6. Methodology

2. After sorting the clusters, the top 10% is selected.

3. For each cluster, the algorithm iterates through its points looking for a pair of

points a and b where the direction vector from point a to point b is approx-

imately parallel to the rail track direction vector calculated in Section 6.5.4.

Two vectors are parallel if the magnitude of their cross product equals zero.

In this particular case, vectors are considered parallel if their cross product

magnitude falls below the threshold of 0.15.

4. Following the collection of point pairs for each cluster, the algorithm proceeds

by selecting the pairs with the maximum distance and averages them. This

mean value is the result of the estimation.

Connect clusters based on rail tie direction vector

With the completion of the necessary calculations for the clusters, the process of

grouping them by rail tie can begin. The algorithm used for this is a modified version

of the DBSCAN algorithm mentioned in Section 6.5.3. In this modified version, the

cluster centroids are clustered. Given two clusters with centroids c1 and c2, c1 is

reachable from c2 if the following conditions are met:

1. The Euclidean distance between c1 and c2 is less than 1.435 meters. This

particular threshold is based on the fact that in the majority of European

countries, the standard track gauge is 1.435 meters. It is not possible for two

clusters with greater distances to be part of the same rail tie.

2. The direction vector from c1 to c2 is either:

• Approximately parallel to the rail track direction vector calculated in

Section 6.5.4, meaning that the magnitude of their cross product falls

below 0.185.

• The Euclidean distance between c1 and c2 is less than the rail tie width

estimated in Section 6.5.4. In case this estimation was not performed, the

algorithm falls back to the default value of 20 cm.

It is important to mention that this relation between clusters is commutative. If

c1 is connected to c2 then c2 is connected to c1. Similarly, if c1 is not connected to

c2 then c2 is not connected to c1.

34

6. Methodology

Figure 6.13 demonstrates an example of this relation for a single cluster outlined

with purple. Clusters colored in green meet the criteria to be considered reachable,

while the red and blue clusters do not.

Figure 6.13: Identification of connected clusters for a single rail tie

Figure 6.14: Connected rail ties represented with different colors

6.5.5 Fit oriented bounding box to grouped clusters

In order to find the obscured parts, an oriented bounding box is fitted to the

grouped clusters. An oriented bounding box (Figure 6.15b) is similar to an axis-

aligned bounding box (Figure 6.15a) but can be rotated freely in three-dimensional

35

6. Methodology

space. Therefore, it is not restricted to align with the coordinate axes. This attribute

of oriented bounding boxes is especially useful as their shape closely resembles that

of the rail tie itself.

(a) Axis-aligned bounding box fitted to rail
tie (b) Oriented bounding box fitted to rail tie

6.5.6 Extract points inside oriented bounding box

After the oriented bounding box is created, every point within it is classified as

a rail tie point.

(a) Rail tie with missing points (b) Rail tie points extended with points
from the oriented bounding box

36

6. Methodology

This process is repeated for every rail tie. Consequently, a significant portion of

the points obscured by track ballast is identified (Figure 6.17).

Figure 6.17: Rail ties after identifying obscured points

With this phase finished, the rail ties are obtained.

6.6 Fault detection

During the fault detection phase, the identified rail ties are examined based on

the amount of track ballast located on their surface and the deviation from the

height of neighboring rail ties. If a rail tie fails to meet the criteria for either of these

factors, it is classified as defective. It is important to note that the algorithm in its

current state lacks the ability to identify rail ties that are completely obscured by

track ballast, meaning that it is unable to conduct fault detection of hidden rail ties.

6.6.1 Find rail ties covered by too much track ballast

After connecting the identified clusters in Section 6.5.4, the mean and standard

deviation of the number of points in the connected cluster groups are calculated. A

rail tie is considered defective if the following inequality is true:

n < µ− σ ∗m (6.7)

Where the variables represent the following:

n: The number of points in a cluster group.

37

6. Methodology

µ: The mean number of points in the cluster groups.

σ: The standard deviation of the number of points in the cluster groups.

m: The positive multiplier applied to the standard deviation. This determines

the extent to which the threshold is adjusted. Values within the range of 0

to 1.0 will result in a tighter threshold, while values above 1.0 will lead to a

looser threshold.

An example of these kinds of defects can be seen in Figure 6.18 and Figure 6.19,

both showing the same area but with different m parameters.

Figure 6.18: Rail ties covered by an excessive amount of track ballast (m = 1.0)

Figure 6.19: Rail ties covered by an excessive amount of track ballast (m = 2.0)

38

6. Methodology

6.6.2 Find sunk rail ties

To find rail ties that are sunk into the trackbed, the first step is to get the

mean height of the rail ties surrounding the examined rail tie. In case of significant

deviation from this mean value, the rail tie is classified as faulty.

For demonstration purposes, this threshold was set to 5 cm, and a testing dataset

has been created where one of the rail ties has been intentionally positioned lower

than its surroundings (Figure 6.20b).

(a) Sunk rail tie (top view) (b) Sunk rail tie (side view)

39

Chapter 7

Implementation

The implementation extends an already existing framework named railroad, de-

veloped by Cserép, Hudoba, and Vincellér [13]. This framework allows the step-

by-step manipulation of an input cloud, as well as saving the final output. Due to

performance considerations, the framework is implemented in C++. The project

builds on multiple open-source libraries. Point Cloud Library(PCL) [14] is used to

store and search point clouds effectively. OpenCV [15] is used for the projections and

transformations. LasLib and LasZip are used for reading, writing, and compressing

point cloud files. For the preprocessing of the data LASTools [16] is used.

7.1 Contribution

The majority of the contribution of the current research to the framework is the

implementation of the following 6 filters in form of classes:

NormalChangeRateFilter: Computes the normal change rate value for each

point as described in Section 5.1, and filters them based on a user-defined

predicate.

RoughnessFilter: Computes the roughness value for each point and filters

them based on a user-defined predicate as described in Section 5.2.

LocalHeightFilter: Computes the distance of each point from the least

squares fitted plane of its neighborhood as described in Section 6.3.1.

TrackBedFilter: Given a seed with the points of the rail track, this filter

removes points that are not part of the trackbed as described in Section 6.4.

40

7. Implementation

OrientedBoundingBoxFilter: Crops the points not contained in any of the

oriented bounding boxes (Section 6.5.5) provided as a parameter.

RailTieFilter: This filter combines the above 5 filters to obtain the points of

the rail ties.

7.2 Code availability

The source code of the program is provided as an attachment to the thesis.

Additionally, it is accessible on GitHub at:

https://github.com/GISLab-ELTE/railroad

7.3 Configuration availability

Due to the high number of parameters, the framework has been extended with a

configuration file loader. This allows the user to specify the configuration parameters

in a file without the need to recompile the entire program. The configuration file is

provided as an attachment to the thesis. The configuration can be loaded by setting

the –algorithmConfig <input> parameter of the executable in the CLI.

41

https://github.com/GISLab-ELTE/railroad

Chapter 8

Results and conclusion

The 8 samples used for the accuracy and runtime benchmarks were manually

selected with the intention to test the robustness and fault tolerance of the proposed

method. The length of the railway covered by the samples ranges from ∼20 meters

up to ∼60 meters. The samples together cover approximately 250 meters of rail

infrastructure.

The algorithm was benchmarked on a PC with the following specifications:

- CPU: AMD Ryzen 7 5700X 8-Core 3.4 GHz

- RAM: 32 GB (3600 MHz)

- Operating System: Ubuntu 20.04 LTS

8.1 Multithreading

It is important to note that the majority of the algorithm was implemented

with multi-threading. This means that the workload is divided equally between the

number of physical threads available in the specific CPU. Therefore the runtime of

the algorithm highly depends on the hardware. In the above setup, the CPU had

16 physical threads, consequently the benchmarks were performed with 16 threads.

To demonstrate the performance gains achieved through the utilization of multi-

threading, the processing time of a sample with approximately 850,000 points was

measured with 1,2,4,8, and 16 threads (Figure 8.1).

Taking the results into consideration, it is evident that the most significant per-

formance gain (71%) was achieved by increasing the number of threads from 1 to

42

8. Results and conclusion

4. Subsequently, a notable runtime reduction of 35% was observed when comparing

the utilization of 8 threads to 4. After this, increasing the thread count to 16 only

yielded a 16% improvement compared to 8 threads.

These diminishing returns for higher thread counts can be attributed to the turbo

boost technology [17] built into most modern CPUs. This technology allows some

of the CPU cores to reach speeds beyond the base operating frequency for a short

period of time. By running the computation in parallel on all of the available cores,

this boost period is shortened. In the event of longer computation durations, it is

expected that the gaps between the runtimes would continue to grow.

2401 thread

1292 threads

704 threads

458 threads

3716 threads

0 20 40 60 80 100 120 140 160 180 200 220 240
seconds

Figure 8.1: Runtime comparison in seconds with different number of threads
(approximately 850,000 points)

8.2 Rail tie segmentation results

In this section, the segmentation results of the algorithm will be presented and

evaluated. In Figures 8.2, 8.3, and 8.4, the segmentation results of the 8 datasets

can be seen with the identified rail ties colored in red. In Table 8.1, the runtime and

accuracy results can be observed.

43

8. Results and conclusion

(a) 1st dataset (b) 2nd dataset (c) 3rd dataset

Figure 8.2: Rail tie segmentation results for the 1st, 2nd and 3rd datasets

44

8. Results and conclusion

(a) 4th dataset (b) 5th dataset

(c) 6th dataset

Figure 8.3: Rail tie segmentation results for the 4th, 5th and 6th datasets

45

8. Results and conclusion

(a) 7th dataset

(b) 8th dataset

Figure 8.4: Rail tie segmentation results for the 7th and 8th datasets

46

8. Results and conclusion

Upon examining the figures above, it is clearly visible that the algorithm demon-

strates a high level of accuracy in correctly identifying the rail ties. However, a few

instances of false negatives are noticeable in datasets 3 (Figure 8.2c) and 6 (Figure

8.3c). Due to the fact that not enough points were identified to reconstruct the entire

surface of the rail tie, some of them deviate in size from their neighbors as well. For

the testing data, 98.8% of the rail ties were correctly located (Table 8.1).

No.
points

Runtime
in

seconds

Total
No.

rail ties

No.
indentified
rail ties

False
positives

False
negatives

Accuracy
(%)

1 492,644 24 35 35 0 0 100%
2 419,848 22 40 40 0 0 100%
3 812,957 36 68 65 0 3 ∼95.6%
4 300,421 15 27 27 0 0 100%
5 250,798 11 21 21 0 0 100%
6 651,452 29 57 56 0 1 ∼98.2%
7 643,285 28 51 51 0 0 100%
8 324,668 16 28 28 0 0 100%

Total 0% ∼1.2% ∼98.8%

Table 8.1: Accuracy and runtime results of the datasets

8.3 Conclusion

The goal of the current thesis was to propose a robust, LiDAR-based methodol-

ogy for the segmentation of rail ties, while also introducing new ways for detecting

faults in them. The results discussed in Section 8.2 prove that the rail ties can be

identified with great efficiency and accuracy. With the usage of eigendecomposi-

tion for surface analysis, the algorithm has a high fault tolerance against height

deviations of the surrounding terrain. It is also worth mentioning that the ability

of dynamic parameter tuning makes the algorithm more flexible than other meth-

ods with fixed parameters. Moreover, the incorporation of multi-threading in the

algorithm enhances its scalability compared to single-threaded ones.

On the other hand, there is still room for improvement. While the algorithm can

locate the rail ties with great accuracy, the detected objects do not always align with

the shape of the rail ties. Chapter 9 will discuss potential improvements regarding

this issue.

47

8. Results and conclusion

An important finding worth mentioning comes from the domain of rail track

segmentation. Even though the framework already has rail track segmentation de-

scribed in the work of Albert Demján [18], roughness-based filtering (Section 5.2

and 6.3.3) was able to detect rail tracks faster and more reliably for the testing

datasets used in this thesis. Additionally, this type of filtering was not affected by

the curvature of the rail tracks. While the obtained results are promising, further

research is necessary to validate these findings.

48

Chapter 9

Future work

Despite the promising results, there are numerous areas where the proposed

method could be improved, both in performance and accuracy.

9.1 Pattern recognition for missing rail tie detection

In some cases, the rail tie is completely covered by track ballast, rendering the

current algorithm incapable of detecting it. To address this issue, a pattern recog-

nition algorithm could be implemented to detect missing rail ties as well as predict

their position based on the successfully detected surrounding rail ties.

9.2 Improved edge detection of rail ties

During the outlier filtering phase, the points containing the edges of the rail

ties can be incorrectly filtered out for not having enough neighboring points to be

classified as inliers. To resolve this issue, an edge-detection method, such as Canny

Edge Detection [8] could be implemented to restore the original edges of the rail

ties.

9.3 GPU support for massively parallel computing

As it was already discussed in Section 8.1, parallel computation can greatly

enhance the performance of point cloud processing algorithms. With the rise of

GPGPU (General-Purpose Computing on Graphics Processing Units)[19] frame-

works, such as CUDA [20] and OpenCL [21], transferring the responsibility of heavy

49

9. Future work

computations to the GPU can be easily implemented. This improvement has the

potential to accelerate the computation time of currently implemented algorithms

from minutes to seconds.

50

Chapter 10

Acknowledgements

Firstly, I would like to express my gratitude to my supervisor, Máté Cserép,

for his guidance and support. His expertise and feedback helped me immensely

throughout the research and writing process of my thesis.

I would also like to thank the Hungarian State Railways (MÁV Magyar

Államvasutak Zrt.) for providing the datasets that were essential for the research

and the code implementation of the proposed methodology.

Last but not least, I would like to thank Csaba Bajnóci and Zoltán Németh for

their assistance and professionalism in railway-related questions, including specifi-

cations, regulations, and fault thresholds.

51

Bibliography

[1] Marco Neubert et al. “Extraction of railroad objects from very high-resolution

helicopter-borne LiDAR and orthoimage data”. In: (Aug. 2008). url: https:

//www.isprs.org/proceedings/xxxviii/4-c1/sessions/session9/6718_

neubert_proc_pap.pdf.

[2] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus:

A Paradigm for Model Fitting with Applications to Image Analysis and

Automated Cartography”. In: Commun. ACM 24.6 (1981), 381–395. issn:

0001-0782. doi: 10.1145/358669.358692. url: https://doi.org/10.

1145/358669.358692.

[3] Mostafa Arastounia. “Automated Recognition of Railroad Infrastructure in

Rural Areas from LIDAR Data”. In: Remote Sensing 7.11 (2015), pp. 14916–

14938. issn: 2072-4292. doi: 10.3390/rs71114916. url: https://www.mdpi.

com/2072-4292/7/11/14916.

[4] Mostafa Arastounia. “An Enhanced Algorithm for Concurrent Recognition of

Rail Tracks and Power Cables from Terrestrial and Airborne LiDAR Point

Clouds”. In: Infrastructures 2.2 (2017). issn: 2412-3811. doi: 10 . 3390 /

infrastructures2020008. url: https://www.mdpi.com/2412-3811/2/2/8.

[5] Diptojit Datta et al. “Railroad Sleeper Condition Monitoring Using Non-

Contact in Motion Ultrasonic Ranging and Machine Learning-Based Image

Processing”. In: Sensors 23.6 (2023). issn: 1424-8220. doi: 10 . 3390 /

s23063105. url: https://www.mdpi.com/1424-8220/23/6/3105.

[6] Chandan K J and Akhil vm. “Investigation on Accuracy of Ultrasonic and

LiDAR for Complex Structure Area Measurement”. In: June 2022. doi: 10.

1109/ICOEI53556.2022.9777233.

52

https://www.isprs.org/proceedings/xxxviii/4-c1/sessions/session9/6718_neubert_proc_pap.pdf
https://www.isprs.org/proceedings/xxxviii/4-c1/sessions/session9/6718_neubert_proc_pap.pdf
https://www.isprs.org/proceedings/xxxviii/4-c1/sessions/session9/6718_neubert_proc_pap.pdf
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.3390/rs71114916
https://www.mdpi.com/2072-4292/7/11/14916
https://www.mdpi.com/2072-4292/7/11/14916
https://doi.org/10.3390/infrastructures2020008
https://doi.org/10.3390/infrastructures2020008
https://www.mdpi.com/2412-3811/2/2/8
https://doi.org/10.3390/s23063105
https://doi.org/10.3390/s23063105
https://www.mdpi.com/1424-8220/23/6/3105
https://doi.org/10.1109/ICOEI53556.2022.9777233
https://doi.org/10.1109/ICOEI53556.2022.9777233

BIBLIOGRAPHY

[7] Mohammad Sajjad Pasha. “Machine vision for automating visual inspection

of wooden railway sleepers”. In: 2007. url: https://www.diva-portal.org/

smash/get/diva2:518382/FULLTEXT01.pdf.

[8] John Canny. “A Computational Approach to Edge Detection”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence PAMI-8.6 (1986),

pp. 679–698. doi: 10.1109/TPAMI.1986.4767851.

[9] Piotr Bojarczak and Waldemar Nowakowski. “Application of Deep Learning

Networks to Segmentation of Surface of Railway Tracks”. In: Sensors 21.12

(2021). issn: 1424-8220. doi: 10.3390/s21124065. url: https://www.mdpi.

com/1424-8220/21/12/4065.

[10] Donald Meagher. Octree Encoding: A New Technique for the Representation,

Manipulation and Display of Arbitrary 3-D Objects by Computer. Oct. 1980.

[11] Ask Neve Gamby and Jyrki Katajainen. “Convex-Hull Algorithms:

Implementation, Testing, and Experimentation”. In: Algorithms 11.12 (2018).

issn: 1999-4893. doi: 10.3390/a11120195. url: https://www.mdpi.com/

1999-4893/11/12/195.

[12] Borbély Dávid and Tarczali Tamás. “Examination of drone imagery processing

algorithms (in Hungarian)”. In: 2021.

[13] Máté Cserép, Péter Hudoba, and Zoltán Vincellér. “Robust Railroad Cable

Detection in Rural Areas from MLS Point Clouds”. In: July 2018. doi: 10.

7275/z46z-xh51.

[14] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library

(PCL)”. In: 2011 IEEE International Conference on Robotics and Automation.

2011, pp. 1–4. doi: 10.1109/ICRA.2011.5980567.

[15] OpenCV. Open Source Computer Vision Library. 2015.

[16] Martin Isenburg. LAStools - efficient tools for LiDAR processing. url: http:

//lastools.org.

[17] James Charles et al. “Evaluation of the Intel® Core™ i7 Turbo Boost fea-

ture”. In: 2009 IEEE International Symposium on Workload Characterization

(IISWC). 2009, pp. 188–197. doi: 10.1109/IISWC.2009.5306782.

[18] Demján Albert. “Object extraction of rail track from VLS LiDAR data”. 2020.

url: http://hdl.handle.net/10831/56224.

53

https://www.diva-portal.org/smash/get/diva2:518382/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:518382/FULLTEXT01.pdf
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.3390/s21124065
https://www.mdpi.com/1424-8220/21/12/4065
https://www.mdpi.com/1424-8220/21/12/4065
https://doi.org/10.3390/a11120195
https://www.mdpi.com/1999-4893/11/12/195
https://www.mdpi.com/1999-4893/11/12/195
https://doi.org/10.7275/z46z-xh51
https://doi.org/10.7275/z46z-xh51
https://doi.org/10.1109/ICRA.2011.5980567
http://lastools.org
http://lastools.org
https://doi.org/10.1109/IISWC.2009.5306782
http://hdl.handle.net/10831/56224

BIBLIOGRAPHY

[19] David Luebke et al. “GPGPU: General-Purpose Computation on Graphics

Hardware”. In: Proceedings of the 2006 ACM/IEEE Conference on

Supercomputing. SC ’06. Tampa, Florida: Association for Computing

Machinery, 2006, 208–es. isbn: 0769527000. doi: 10.1145/1188455.1188672.

url: https://doi.org/10.1145/1188455.1188672.

[20] Ramandeep Singh Dehal et al. “GPU Computing Revolution: CUDA”. In: 2018

International Conference on Advances in Computing, Communication Control

and Networking (ICACCCN). 2018, pp. 197–201. doi: 10.1109/ICACCCN.

2018.8748495.

[21] John E. Stone, David Gohara, and Guochun Shi. “OpenCL: A Parallel

Programming Standard for Heterogeneous Computing Systems”. In:

Computing in Science & Engineering 12.3 (2010), pp. 66–73. doi: 10.1109/

MCSE.2010.69.

54

https://doi.org/10.1145/1188455.1188672
https://doi.org/10.1145/1188455.1188672
https://doi.org/10.1109/ICACCCN.2018.8748495
https://doi.org/10.1109/ICACCCN.2018.8748495
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/MCSE.2010.69

List of Figures

2.1 Aerial Laser Scanning visualized . 6

2.2 Mobile Laser Scanning visualized . 7

2.4 Concrete rail ties . 8

4.1 Original and cropped samples with different amounts of vegetation . . 16

6.1 Flowchart of the algorithm . 21

6.2 Octree data structure visualized . 23

6.3 Bounding box visualized . 24

6.4 Point cloud before and after local height based filtering 25

6.5 Point cloud before and after normal change rate filtering 26

6.6 Point cloud before and after roughness-based filtering 27

6.7 Filtering runtimes for approximately 800,000 points 27

6.8 Point cloud before and after outlier-based filtering 28

6.9 Point cloud after removing the rail tracks 29

6.11 Clusters computed with DBSCAN . 31

6.12 Vectors used to describe the orientation of rail ties 32

6.13 Identification of connected clusters for a single rail tie 35

6.14 Connected rail ties represented with different colors 35

6.17 Rail ties after identifying obscured points 37

6.18 Rail ties covered by an excessive amount of track ballast (m = 1.0) . 38

6.19 Rail ties covered by an excessive amount of track ballast (m = 2.0) . 38

8.1 Runtime comparison in seconds with different number of threads . . . 43

8.2 Rail tie segmentation results for the 1st, 2nd and 3rd datasets 44

8.3 Rail tie segmentation results for the 4th, 5th and 6th datasets 45

8.4 Rail tie segmentation results for the 7th and 8th datasets 46

55

List of Tables

3.1 The accuracy and precision of the examined methods of track detection 14

4.1 The datasets used for testing . 16

8.1 Accuracy and runtime results of the datasets 47

56

	Introduction
	Background
	LiDAR technology
	Methods of measurement
	Aerial Laser Scanning
	Mobile Laser Scanning
	Terrestrial Laser Scanning

	Rail ties
	Usage of LiDAR in railways

	Literature review
	Extraction of railroad objects from high-resolution ALS data
	Usage of an adapted RANSAC algorithm
	Rail object detection using 2D cuts

	Rail object detection using height deviation
	Rail object detection using eigendecomposition
	Rail tie condition monitoring using ultrasonic ranging
	Machine vision for the inspection of wooden rail ties
	Segmentation of railway tracks using deep learning
	Conclusions

	Dataset
	Metrics of surface analysis
	Normal change rate
	Calculation of the covariance matrix
	Eigendecomposition of the covariance matrix
	Calculating normal change rate from eigenvalues

	Roughness
	Calculating Least Squares Plane
	Calculating point to plane distance

	Methodology
	Shifting the points
	Partitioning the 3-dimensional space
	Locating rail tracks
	Filter based on local height
	Filter based on normal change rate
	Filter based on roughness
	Filter based on outliers

	Extracting the trackbed
	Fitting convex hull to rail tracks
	Filter points inside the convex hull
	Remove rail tracks

	Extracting rail ties
	Filter based on normal change rate
	Filter based on outliers
	Cluster points with DBSCAN
	Connect clusters
	Fit oriented bounding box to grouped clusters
	Extract points inside oriented bounding box

	Fault detection
	Find rail ties covered by too much track ballast
	Find sunk rail ties

	Implementation
	Contribution
	Code availability
	Configuration availability

	Results and conclusion
	Multithreading
	Rail tie segmentation results
	Conclusion

	Future work
	Pattern recognition for missing rail tie detection
	Improved edge detection of rail ties
	GPU support for massively parallel computing

	Acknowledgements
	Bibliography
	List of Figures
	List of Tables

