
TDK-dolgozat

Péter Farkas Dominik Jámbor

LiDAR point cloud positioning using
sensor fusion

EÖTVÖS LORÁND UNIVERSITY

FACULTY OF INFORMATICS

DEPT. OF SOFTWARE TECHNOLOGY AND METHODOLOGY

Authors:

Péter Farkas
Computer Science MSc

2. year

Dominik Jámbor
Computer Science MSc

2. year

Supervisor:

Máté Cserép
assistant lecturer

Budapest, 2022

Contents

1 Introduction 3

2 Related Work 4

2.1 The point cloud positioning problem . 4

2.2 Hardware options . 5

2.3 Software options . 7

2.3.1 SLAM . 7

2.3.2 Iterative Closest Point . 8

2.3.3 LiDAR Odometry and Mapping 9

2.3.4 State-of-the-art methods with LOAM foundations 9

2.3.5 Machine Learning approaches 10

2.4 Fusion . 10

3 Methodology 13

3.1 Hardware . 13

3.1.1 The carrying vehicle . 13

3.1.2 The onboard computer . 15

3.1.3 The LiDAR sensor . 15

3.1.4 The external GPS unit . 17

3.1.5 The inertial measurement unit 17

3.1.6 Measurement experiences . 18

3.2 Software . 19

3.2.1 GNSS based positioning . 19

3.2.2 ICP based positioning . 23

3.2.3 IMU based orientation estimation 26

4 Implementation 29

4.1 Architecture overview . 29

CONTENTS

4.2 Our contributions . 30

4.3 Grabber . 31

4.4 The Producer . 34

4.5 Processor pipeline . 35

4.6 Calculators . 37

4.7 Processing IMU data . 38

5 Results 41

5.1 Recording of measurements . 41

5.2 Mapping with only GPS . 42

5.2.1 Offline GPS . 42

5.2.2 Online GPS . 45

5.3 Mapping with only ICP . 48

5.4 Evaluation of single method approach 50

5.5 Mapping with GPS and ICP SLAM combined 51

5.6 Mapping with IMU and ICP SLAM combined 52

5.6.1 Indoor corridor . 52

5.6.2 Indoor and outdoor combined 54

5.7 Evaluation of combined approach . 58

6 Conclusion 59

6.1 Future work . 60

Acknowledgements 61

Bibliograhpy 61

List of Figures 66

Chapter 1

Introduction

In recent years the importance of accurately mapping the surrounding area of an

object escalated notably primarily due to the rise of autonomous vehicle development.

Other areas however, such as mapping hazardous or remote sites, detecting and analyzing

changes in facilities or structures are actively researched as well, since advancements in

these areas lead to safer working and living environments for countless people.

Multiple methods have been researched to achieve such mapping and fusion is a

common approach in the majority of them. However, the kind of data sources fused

together and the type of fusion leaves room for future research as there are a vast number

of possibilities.

In this paper, we propose a pipeline based approach for processing LiDAR data and

complementing it with other data sources, such as IMU and GNSS sensors to determine

the pose of the LiDAR sensor and generate a merged point cloud, which is an accurate

reproduction of the covered area. Our goal with the pipeline is to create a flexible mapping

framework, which can easily be extended with new sensors whether as a sensor with

varying accuracy and an accuracy metric or a sensor from which the transformation can

always be executed as a pipeline step. We also set out to execute our research with a

portable and relatively low-cost set of equipment which can be easily replicated.

We evaluated our design with SLAM-LiDAR, GPS-LiDAR, GPS-SLAM-LiDAR and

IMU-SLAM-LiDAR combinations, some of which were done by pushing a cart by hand,

others by mounting the equipment on a car. All of the combinations produced promising

results, laying the foundation for further improvement and research with our pipeline

model.

3

Chapter 2

Related Work

2.1 The point cloud positioning problem

To achieve accurate environment mapping, different techniques are being utilized

for facility management, hazardous site discovery as well as positioning and navigating

autonomous vehicles. One of the most frequently used sensors for site mapping are

LiDAR (Light Detection and Ranging) sensors. A LiDAR sensor typically emits eye-safe

pulsed lightwaves into the surrounding environment and calculates the distance they

traveled based on the time of return. These devices come with different field of view

characteristics, for example, in Figure 2.1 a 360 degree field of view sensor is presented.

After collecting a considerable amount of measurements, the output of a LiDAR sensor is

usually a point cloud. This cloud is essentially a 3 dimensional model of the environment,

however only the part which is visible for the sensor at the moment of measurement. In

order to get a complete model and thus map the surrounding site, multiple of these point

clouds need to be fused together while moving the sensor around. Estimating the pose of

the LiDAR sensor is a key part in fusing these point clouds together.

4

2. Related Work

Figure 2.1: Teledyne CL-360 LiDAR sensor [1]

2.2 Hardware options

Depending on the use-case, numerous other sensors can be used to help determine the

pose of an agent. Autonomous vehicles in most cases can make use of a rotary encoder

attached to one of the wheels. Through this device, the angular motion of the wheel can

be measured digitally which provides a reliable odometry. Such vehicles often utilize

onboard cameras as well and process their data feed with computer vision algorithms.

The shortcomings of such combinations are that rotary encoders can not provide heading

data and conventional cameras are sensitive to light conditions.

Another very common type of device are GNSS (Global Navigation Satellite System)

sensors. These devices as Figure 2.2 shows, use satellites to determine their position on

Earth by calculating the amount of time it took for the signal from the satellites to reach

the sensor. This method requires the satellites to have a very precise clock, which is solved

by equipping them with atomic clocks. It is also required that the receiver device has a

very accurate time reading, but this can be calculated by using 4 satellite signals. The

drawbacks of a GNSS sensor is that it needs a clear line of sight to the satellites and in

case of a cold start it can take several minutes for the sensor to map the required satellites.

5

2. Related Work

Figure 2.2: GNSS principles illustrated simply [2]

IMU (Inertial Measurement Unit) sensors are often used to estimate orientation and

(short term) position as well. A typical 9 DOF (degree of freedom) IMU consists of 3

sensors. A 3 axis accelerometer to get a digital reading of the linear acceleration on each

axis, a 3 axis gyroscope for angular rate reading and a 3 axis magnetometer to correct

the heading calculation by serving as a compass in case of biases or errors in the other

2 sensors. 9 DOF IMUs today are often shipped with integrated GNSS sensors. 6 DOF

IMUs without a magnetometer as seen in Figure 2.3 are common as well, because they

are sufficient for a lot of applications where the heading is not needed or is calculated

differently. Inertial measurement units, when used alone, can be affected by magnetic

interference, and even the more advanced units have noise and measurement errors which

add up over time.

Figure 2.3: SkyMEMS 6 Dof IMU Sensor [3]

6

2. Related Work

Regarding the price categories of the previously mentioned devices, it can be quite

costly to do such experiments. This paragraph provides a context for the price ranges and

feature sets of these sensors.

• An outdoor LiDAR sensor can be purchased for under 1.4 million HUF (3 800 C)

with 16 vertical channels, 100 m of range and 30° vertical field of view, however

the price can be as high as 36 million HUF (95 000 C) for a sensor with 128 vertical

channels, 300 m range and 40° vertical field of view.

• IMU sensors can vary from under 2 000 HUF (5 C) for a sensor array with

8.75 mdps angular rate sensitivity, 0.061 mg linear acceleration sensitivity and

0.08 mgauss sensitivity up to 450 000 HUF (1 100 C) with 1 mdps angular rate

sensitivity, less than 0.04 mg in-run bias stability for the accelerometer and less than

7°/hr angular rate drift for the gyroscope with onboard soft and hard iron calibration

for the magnetometer.

• GPS module prices start at 2 000 HUF as well for a sensor with 56 receiving

channels and 2.5 m location location accuracy, whereas RTK GNSS sensors are

available at 5 million HUF (13 000 C) with 448 channels a 6 cm location accuracy

and a variety of complementary features.

The devices used during our measurements are on the lower end of the price and feature

spectrum as we set a low overall equipment price as one of our goals.

Complementing the LiDAR reading with other sensory data can be very effective,

however it is not the only way of fusing point clouds together. SLAM (Simultaneous

Localization and Mapping) algorithms, introduced in the next section, calculate the

position based on the readings themselves instead of relying on other measurements.

2.3 Software options

2.3.1 SLAM

Simultaneous Localization and Mapping is the problem of creating a map of the

environment and positioning the mapping actor in it at the same time. The issue originally

emerged in robotics, with the question being if it is possible for a mobile robot to build a

consistent map of an unknown environment while simultaneously locating itself in it.

7

2. Related Work

It was first described by Lu and Milios, which solved the task in a two-step approach

[4]. The first step tries matching the subsequent scans to establish an initial estimation of

the transformation between two poses. The second step aims to optimize the Mahalanobis

distances [5] between all poses in the created pose node network. This two step approach

gained quite a popularity and has become the base for other methods extending on it.

2.3.2 Iterative Closest Point

One of the most common and long-standing SLAM methods is the ICP [6] (Iterative

Closest Point) algorithm. Given a reference and an input point cloud, it produces the

transformation for the input to best match the reference. The first step of this process

consists of first establishing point pairs from the input and reference sets, which are

presumed to be the same points, then estimating the rotation and translation needed to

move the input cloud to minimize the distance of these pairs. Finally, the transformation

is applied and the process is repeated, hence the iterative nature, a single iteration of

which can be seen in Figure 2.4. The algorithm is described in a more formal manner in

chapter 3.

Figure 2.4: A single ICP iteration visualized [7]

The difficulty with this method is that like other gradient descent algorithms, it relies

on having a decent enough input, so as to not get stuck on a local minimum. For this reason

in use cases like 3D model scanning these pair points are often registered manually. Also

8

2. Related Work

as plenty of points in the cloud are used in each iteration, it is considered computationally

slow.

2.3.3 LiDAR Odometry and Mapping

A more recent widespread algorithm is LOAM [8] (LiDAR Odometry and Mapping),

another SLAM approach proposed by Zhang and Singh, which as the name suggests,

separates the odometry and mapping tasks and solves them individually. The first of

the two algorithms running in parallel is high-frequency but coarse velocity estimation,

roughly placing the frame, whereas the second, lower-frequency one corrects motion

distortions in the point cloud, refining the end result. An overview of this process can

be seen in Figure 2.5.

For the first step, this approach makes use of extracted plane and edge features via

the minimization of point-to-plane and point-to-edge distances for the feature points.

After this initial mapping, the refining step performs batch-optimization similar to ICP.

This being lower frequency gives this step more time to reach convergence and increase

accuracy, whereas the parallel nature makes real-time use feasible. Also because of its

modularity, incorporation of other helper systems, like IMU for odometry is convenient.

Figure 2.5: The two step localization and mapping [8]

2.3.4 State-of-the-art methods with LOAM foundations

Building upon these foundations, there have been a number of novel approaches in the

recent years. F-LOAM [9] by Wang et al. aims at further improving real-time performance

of the LOAM framework, by removing the iterative part and replacing it with a 2-stage

lightweight distortion compensation. Their proposed model achieves this with features

which tend to be extracted multiple times through overlapping scans. Using these and

9

2. Related Work

their surrounding geometry the model manages to produce competitive results while being

computationally less demanding.

BALM [10] is another model built upon a LOAM back-end, with the aim of reducing

the accumulated registration error inherent to the frame-wise registration scheme. It does

this by using bundle adjustment in a sliding window in which already registered scans

can be readjusted, resulting in smaller drifts over longer mappings compared to regular

LOAM.

Another approach to increase accuracy was demonstrated in M-LOAM [11]. This

model uses multiple LiDAR sensors to help with data sparsity, along with a modified

LOAM framework to achieve a robust and accurate system and provide a solution to the

issue of calibrating multiple input sources.

2.3.5 Machine Learning approaches

It is also notable that with the popularity of machine learning in autonomous driving

and road detection, ML approaches have been applied to the mapping problem as well.

One of these recent models [12] combines conventional cameras and LiDAR in order to

compensate for the shortcomings of each device and achieve a robust system less reliant

on external conditions. With the added novelty of the two inputs being fused in a trainable

fashion, the final performance was competitive with that of the state-of-the-art.

2.4 Fusion

As discussed earlier, several options exist to estimate the pose difference between two

LiDAR frames, however each method has its shortcomings. The solution for these is to

use a fusion of two or more of the previously mentioned sources of information.

As the research [13] of shows, using a GNSS / IMU / ODO / LiDAR-SLAM

combination with high quality sensors resulted in robust tracking Chang, Niu, and Liu.

Where the GNSS is not available, the IMU / ODO / LiDAR-SLAM provides accurate

tracking even at places where LiDAR data is not usable e.g. tunnels with little to no

identifiable features via ODO / IMU even at 30 and 60 km/h speeds. As seen in Figure 2.6,

the navigation errors were under 7 meters on each axis even during the simulated 2 minute

long GNSS outages. The heading errors were kept under 1° as well.

10

2. Related Work

Figure 2.6: GNSS/IMU/ODO/LiDAR-SLAM navigation errors

Zuo et al. demonstrated, that IMU and LIDAR data can be complemented by higher

frequency camera data, which can help determine movement between LiDAR scans by

mapping LIDAR features to visual features [14]. This fusion resulted in very small

average trajectory errors and was robust against aggressive movement. As Figure 2.7

shows, the LIC-Fusion proposed by the authors provided the most accurate tracking

compared to the LOAM and MSCKF (Multi-State Constraint Kalman Filter) frameworks.

Figure 2.7: Top view of outdoor sequence trajectories

Discussed by the study of Xue, Fu, and Dai, an IMU / LiDAR / ODO combination

can supply the LOAM algorithm with an initial guess for the pose [15], which the

algorithm can use to calculate a significantly more precise result. This approach then

11

2. Related Work

uses an extended Kalman filter to fuse the estimations. During an approximately 1.1 km

long test trajectory with a velocity of 21 km/h a mean relative position error of 0.31% was

reached.

Karam, Lehtola, and Vosselman examine multiple possibilities for fusing SLAM and

IMU estimations [16]. The most accurate results compared to switching and exclusive

approaches were produced by constructing a cubic spline from the two linear ones

provided by the two information sources. This joint approach produced a root mean square

error of 0.63° when reconstructing perpendicular surfaces of a data set which could not

be processed by the IMU or the SLAM approaches separately.

As seen in the studies shown earlier, relying solely on SLAM algorithms or sensors

alone is only effective in certain scenarios whereas fusing their outputs can produce a

more robust and versatile tracking solution. According to this, our approach described in

detail in the next chapter is based on fusion as well.

12

Chapter 3

Methodology

3.1 Hardware

Portability and accessibility were among our goals when choosing the hardware

components of the project. We achieved this by only using devices that were available

for the public to order online either on the manufacturer’s site or a reseller. The hardware

composition consists of a LiDAR sensor, an external GPS unit, an onboard computer, an

IMU unit and a carrying vehicle. In the next sections, we are going to introduce the chosen

components and their qualities which were important in terms of our research.

3.1.1 The carrying vehicle

The vehicle on which our devices are carried is not an integral part of the design,

it can be an arbitrary vehicle with very few constraints. The 3 main criteria are to keep

vibrations as low as possible, avoid magnetic interference and provide sufficient space for

the other components and a battery. During our measurements we used multiple vehicles

depending on the availability and the type of the measurement. Two examples of what a

complete measurement setup looks like can be seen in Figure 3.1 for indoor configuration

and Figure 3.2 for outdoor configuration.

13

3. Methodology

Figure 3.1: Indoor hardware composition

Figure 3.2: Outdoor hardware composition

14

3. Methodology

3.1.2 The onboard computer

As portability was an important aspect during the hardware selection, we needed a

versatile computer to read and process IMU and LiDAR data with a form factor small

enough to be able to be attached to the LiDAR sensor. As seen in Figure 3.3, the Raspberry

Pi 4 [17] fits these criteria as in spite of its smaller size, it is equipped with the necessary

I/O ports to carry out the measurements.

Figure 3.3: Raspberry Pi 4 model B

Our model is equipped with a quad core ARM v8 architecture SoC and 4GB of RAM.

The operating system used during the tests was Raspberry Pi OS which is based on the

Debian Linux distribution.

3.1.3 The LiDAR sensor

The LiDAR sensor we used during our research was the Velodyne VLP-16 [18]. This

sensor was an adequate choice because of its versatile feature set and its size seen in

Figure 3.4. Velodyne recently renamed this product to "Puck", due to its dimensions.

The VLP-16 scans its environment in 16 channels, each in a maximum range of

approximately 100 meters. The 16 channels are arranged so that the vertical field of view

is 30°. The sensor can create a 360° horizontal field of view by rotating its inner sensor

with the help of an electric motor with a configurable frequency between 5 Hz and 20 Hz.

Its horizontal angular resolution is between 0.1° and 0.4° depending on the rotation rate.

15

3. Methodology

Figure 3.4: Velodyne VLP-16

A host computer can communicate with the sensor and record its output though an

RJ45 ethernet port. The desktop software we used to record and replay LiDAR data

is called VeloView. VeloView is specifically developed in order to visualize and record

LiDAR data captured via Velodyne’s sensors. The program is a flavor of ParaView

developed by Kitware. VeloView alongside the various viewing assistance features seen

in Figure 3.5, also provides a Python shell which enables the user to run script programs

on the loaded data.

Figure 3.5: VeloView 4.1.3

The VLP-16 sensor also hosts a minimal webpage, which can be used to view and

modify the sensor’s settings and state without any dedicated programs.

16

3. Methodology

3.1.4 The external GPS unit

Our external GPS unit utilizes a MediaTek MT3339 all-in-one GPS chipset [19].

It provides us with 66 acquisition-channels and 2.5 m location accuracy. The unit

is connected to the LiDAR sensor’s GPS port, which is specifically designed to be

compatible with Garmin sensors, so a custom made adapter was required for us to be

able to connect these devices.

3.1.5 The inertial measurement unit

Our choice for the IMU sensor was the BerryGPS-IMU V4 designed by OzzMaker

[20]. The BerryGPS-IMU V4 as seen in Figure 3.6 is fitted with the following versatile

array of sensors: GNSS (CAM-M8 module from uBlox), accelerometer, gyroscope,

magnetometer, barometric and temperature sensor. In spite of the versatility, the

BerryGPS is among the more affordable IMU solutions on the market today. Furthermore,

the unit was specifically designed to fit Raspberry Pi computers, which caused the design

procedure of the hardware composition to be notably more convenient.

Figure 3.6: BerryGPS-IMU V4

This unit supports a maximum linear acceleration sensitivity of 0.061 mg/LSB,

angular rate sensitivity of 4.375 mdps/LSB and magnetic induction sensitivity of 1.46156 ·

10−4 gauss/LSB. During our measurements, the sensitivity values were set to 0.244

mg/LSB, 70 mdps and 2.92312 ·10−4, respectively.

The IMU board is connected to the Raspberry Pi through its GPIO (general-purpose

input / output) pins and communicates via an I2C communication bus.

The following section presents our experience with the previously detailed equipment.

17

3. Methodology

3.1.6 Measurement experiences

We managed to reach a high level of portability with our hardware choices. Our

measurement kit can be set up with a wide variety of carrying vehicles without significant

modifications. The lack of violent shaking however turned out to be an important aspect

as uneven ground surface or poor vehicle quality significantly impaired the IMU’s

positioning capability.

The LiDAR sensor’s output was reliable throughout our experiments. The only

problems we encountered were when i) moving around reflective glass surfaces, artifacts

were detectable in the point clouds; and ii) uneven ground could produce distortions in

the measurement due to the wobbling of the sensor.

The inertial measurement unit provided us with a few challenges. The gyroscope drift

needed to be compensated for, because we measured a slight rotation even after passing

the measurement data through our filter algorithm in 6 DOF mode. The gyroscope drift

could also be corrected via the magnetometer, though it was prone to output data which

could not be processed due to magnetic interference. After our first measurements, we

concluded that the electric motor which provides the spin for the LiDAR sensor creates

too much interference for the IMU’s magnetometer for it to be placed right on top of the

LiDAR housing. Our solution was to use a 3D printed structure seen in Figure 3.7 to hold

the onboard computer with the IMU close to the LiDAR device, so their movement is as

synchronised as possible, but far enough so that the motor’s electromagnetic pulses are

not detectable in the magnetometer data.

Figure 3.7: Mounting structure for the onboard computer and IMU

18

3. Methodology

Although the 3D printed holder solved the interference with the electric motor,

unprocessable data still occurred to an extend in our measurements even after hard and

soft iron calibration (detailed in 3.2.3).

The reliability of the onboard GNSS sensor of the BerryIMU was proven to be

questionable during our research. The sensor took multiple, in some cases more than 10

minutes to find GNSS satellites after a cold start. After acquiring a signal, the calculated

positions were often not usable by our positioning pipeline. Figure 3.8 shows the path

given by the onboard and external GPS outdoors next to a building compared to the ground

truth.

Figure 3.8: Comparison of the external GPS and onboard GNSS sensor to the ground
truth

Our external GPS provided better quality results, which we could feed into our

pipeline. Occasional long startup times and long signal regain times did occur here as

well, however the overall performance was sufficient for our needs.

In the following sections, we are going to elaborate on the software architecture

applied in this research.

3.2 Software

3.2.1 GNSS based positioning

In our fusion based approach one major component is GNSS (Global Navigation

Satellite System) [21] based positioning. These are based off of the fact that one’s 3D

position can be calculated using the coordinates and distances to any 3 points in space.

While by now a number of systems exist, for our purposes we used GPS (Navstart Global

Positioning System) for its easy availability and due to hardware requirements.

The original GPS file recording based positioning was established by Roxána

Provender in her previous work on the project [22], which is briefly summarized in

19

3. Methodology

this subsection, but also extended with a new and significant contribution of our work:

real-time data reading from a sensor connected to the LiDAR.

For the base of the accuracy scores of the GPS measurements we used the so-called

DOP (Dilutation of Precision) [23] info available. This is a scale of n > 1,n ∈ N values

based on the number of satellites visible to the sensor, and their position relative to each

other, with a lower score indicating higher confidence. As for our purposes measurements

with 11+ DOP values1 can be considered of little value, we map these values using the

following formula:

Accuracy =
100
11

(11.5−DOP)

which maps the 1..11 DOP values into a 0-100 scale in a linear fashion.

For offline use, the first step is pre-processing the GPS input. This is necessary to

interpolate data for timestamps which do not have an associated measurement, as well as

refining the measured path, and is done by running the data through a Kalman filter[24].

The accuracy scores of data synthesised by the filter are based off of the accuracy of the

previous point, with decreased score for new points with changing directions from the

previous segment. The effects of this on a path near a tall building with lack of clear

signal can be seen on Figure 3.9.

Figure 3.9: The original route (green) corrected by Kalman filter (red)

Real-time GPS data matching has its own set of challenges as well. While the

pre-recorded data contained Unix timestamps, and as such were available on a 1

measure/second basis, the data provided by the VLP-16 has microseconds based stamping

described in section 4.3. By experimenting with the data we found that rounding these to

seconds worked without much loss of detail, as the multiple data points within the second

provided almost the same measurement anyways.

1Interpretation of DOP values:
https://en.wikipedia.org/wiki/Dilution_of_precision_(navigation)

20

https://en.wikipedia.org/wiki/Dilution_of_precision_(navigation)

3. Methodology

Another issue was the extrapolation of missing data, which could either be because of

the lack of signal, or simply the data not arriving in time due to the asynchronous nature

of the processing. The extrapolation itself is by the use of N-th grade polynomials using

2N data points the following way:

• Let’s denote the measurement points as p1, p1, ...p2N , with their matching

timestamps being t1, t2, ...t2N .

• First we calculate the first order derivatives d1,1,d1,2, ...d1,2N−1

d1, j =
p j+1 − p j

t j+1 − t j

Note that because of the uniform distance between the data points, the t j+1− t j part

will always be equal to 1, thus the denominator can be left out.

• In a similar fashion we calculate all the higher order derivatives di,1,di,2, ...di,2N−i

for i = 2..N
di, j = di−1,2 j −di−1,2 j−1

• Finally, the new data point is extrapolated using the last point and the last derivatives

of each order.

presult = p2N +
N

∑
i=1

di,2N−i

The measurements are stored in a latitude longitude elevation system. To get the

required transformation, we first calculate the distance between our current data point

and the previous one2. This is done by the usage of the Haversine formula[25], which

determines the great-circle distance between two points on a sphere. The formula itself is

the following:

d = 2Rarcsin

√
sin2 φ2 −φ1

2
+ cosφ1 cosφ2 sin2 λ2 −λ1

2

with R being the radius of the sphere, Earth in this case, φ being the latitude and λ the

longitude coordinates.

2For the first data point we return the identity transformation.

21

3. Methodology

In order to separate the horizontal and vertical components, the other part can be fixed,

resulting in the following equations:

∆x = 2Rarcsin

√
sin2 0+2cosφ1 sin2 λ2 −λ1

2

∆y = 2Rarcsin

√
sin2 φ2 −φ1

2
+ cosφ1 cosφ2 sin2 0

It’s of note that this step also transforms the problem from the geographical coordinate

system (lat-long) into the a Cartesian one (x-y-z). After the ∆x and ∆y values are

calculated, the rotation angle is calculated using the formula below:

φ =

π

2 if ∆x > 0∧∆y = 0
−π

2 if ∆x < 0∧∆y = 0
π − arctan ∆x

∆y if ∆x ̸= 0∧∆y ̸= 0

0 if ∆x = 0∧∆y > 0
π if ∆x = 0∧∆y < 0
⊥ otherwise

It should be kept in mind, that from the LiDAR’s perspective, the forwards direction

is the one its traveling towards, for example, in the first case π

2 if ∆x > 0∧∆y = 0 we

can see from ∆x > 0 that the sensor moved straight towards East, meaning a π

2 rotation

from facing North.

It’s also noteworthy that the elevation can also change during the measurements. It’s

not generally available throughout all sources, for example, it’s not present in the currently

parsed online GPS sources, but some file recordings were made with GPS having such

data, which can be used to further increase the accuracy of the transformation. These are

just the height of the measurement point in meters, and as such their difference can be

quite easily calculated:
∆z = τ2 − τ1

where τ is the elevation.

Similar to the rotation, this by itself is not an accurate result, as the LiDAR itself tilts

on a slope, thus perceiving it as straight ground, and so the elevation angle needs to be

22

3. Methodology

calculated as well:

β =

π

2 if ∆z > 0∧d = 0
−π

2 if ∆z < 0∧d = 0
π − arctan ∆z

d if ∆z ̸= 0∧d ̸= 0
0 if ∆z = 0∧d ̸= 0
⊥ otherwise

Finally, after having all the translation and rotation components the affine

transformation can be assembled with φ being the rotation along the z axis and τ along

the x axis:

R =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

∗

1 0 0
0 cosφ −sinφ

0 sinφ cosφ

For the translation, while we have the distances along each axes ∆x ∆y ∆z, these are

all based on a North facing observer, and to form the required transformation the inverse

of the previous rotation must be applied to it:

t = R−1 ∗

∆x
∆y
∆z

3.2.2 ICP based positioning

As briefly already introduced in chapter 2, the iterative closest points algorithm

matches two point clouds by attractively minimizing an error function.

The algorithm usually performs several prepossessing steps before the execution of

the scan alignment to reduce computational complexity and extract further information

[26].

Point down sampling For faster execution this step down sample the input point cloud.

It uses random systematic sub-sampling and keeps one in every 5 points.

Normal calculation This step computes normal vectors for every points in scan. The

normal computation is performed by Principal Component Analysis (PCA) with

10 nearest neighbours of each point. This step is important for the ICP algorithm

described in next section.

Observation vector calculation This step calculates observation vector for each point in

the cloud. The observation vector is the vector which points from the origin to the

point.

23

3. Methodology

Normal orientation This step orients the normal vectors so the angle between

observation vector and normal vector is minimal. This is carried out for ensuring

that every normal points to the same direction.

Given two independently acquired (and optionally preprocessed) sets of 3D points, M

(model set,|M| = Nm) and D (data set,|D| = Nd) which correspond to a single shape, we

want to find the transformation (R,t) consisting of a rotation matrix R and a translation

vector t which minimizes the following cost function:

E(R, t) =
Nm

∑
i=1

Nd

∑
j=1

wi, j||mi − (R∗d j + t)||2

where wi, j = 1 if the i-th point of M and the j-th point of D are the same point in space,

otherwise it’s 0.

In each iteration first the point correspondences, then the transformation (R, t)

which minimizes E(R, t) with the correspondences is calculated. The pseudocode of the

algorithm can be seen in Algorithm 1.

Algorithm 1 ICP algorithm
1: for i = 0 to maxiterations do
2: for all d j ∈ D do
3: Find the closest point within a range dmax in the set M for point d j.
4: end for
5: Calculate transformation (R, t) that minimizes the error function.
6: Apply said transformation to point set D.
7: Calculate the quadratic error ||Ei−1(R, t)−Ei(R, t)|| before and after the

transformation. If their difference is smaller than threshold ε , terminate.
8: end for

It is noteworthy, that if the input point set is not in a decent enough position to begin

with, the algorithm can get stuck on a local minimum, hitting the threshold without finding

the actual proper match, or might not reach the threshold within the fixed iteration number.

The previously presented ICP algorithm is used to register subsequent point clouds

with some refinement. For more robust working for each point in the model point set 3

points of the data set are matched. The distance between the points are calculated using

the following equation:

d = (m− (R∗d + t))∗n

24

3. Methodology

where n is the oriented normal of the model point calculated in during the data

prepossessing. The calculated distance showed in Figure 3.10.

Figure 3.10: Point to plane distance [27]

Weights in the error function set to zero if the distance d between two points is greater

than 1m or the angle between their normal’s if grater than 60 degree. This makes ICP

to consider only matches between points that belongs to similar planes. The number of

maximum iteration set to 80 and the the difference threshold is 0.01m and 0.001rad. The

algorithm also terminates is the calculated t goes beyond 15m or R beyond 0.8rad.

Increase resolution with local maps and keyframes

An issue with LiDAR sensors – especially with more affordable ones – is that the

produced point clouds have a spatial resolution that drastically reduces with distance:

objects have different spatial resolution on scans recorded from different distances. As

a result, the precision of the computed normal between the data and model scans is

different, and matches can be established on points that do not correspond to the same

scene element.

To increase the resolution local maps are used as model point clouds which are

basically concatenations of 3 keyframe scans. Keyframes are certain selected scans. As

the mapping process starts the first perceived point cloud becomes the first keyframe and

also the first local map. A point cloud can becomes a keyframe if the overlaping between

it and the current local map drops below 75%. Not every scan is necessarily stored in the

mapping process to avoid of insert further points to the map in previously visited areas.

25

3. Methodology

3.2.3 IMU based orientation estimation

Theoretically, determining the orientation is a simple mathematical problem with the

sensor readings and elapsed time as parameters. However, these sensor inputs can not be

handled as perfect data sources as there are hardware limitations for the accuracy and

interference tolerance as well.

AHRS filter algorithm

Working with raw sensor data would result in a jittery tracking pattern which not

only would differ from the ground truth, but would not be syncable with the LiDAR data

either. Because of this the raw sensor data is passed into an AHRS (Attitude And Heading

Reference System) filter such as a Kalman filter, which continuously updates its inner state

with new sensor readings and filters the unwanted spikes which have a high probability of

being the result of temporary interference or inaccuracy. Further details about our choice

of filter implementation can be found in 4.7.

Magnetometer calibration

As the magnetometer on our IMU can only provide uncalibrated measurements, we

needed to introduce soft and hard iron calibration on our data.

Hard iron bias occurs when an object in the immediate environment of the sensor

produces a constant additive magnetic field, distorting the magnetometer’s measurements

by an offset in X , Y and Z directions.

The Fusion library provides a parameter to feed our calibration matrices into, however

the matrices need to be calculated and given to the algorithm. This bias can be measured

by rotating the sensor around all of its axes, then solving the following simple equations:

1. hx =
xmax + xmin

2

2. hy =
ymax + ymin

2

3. hz =
zmax + zmin

2

After calculating the hard iron bias, the calibrated measurement values can be

calculated by c = u− h where u is the uncalibrated measurement vector, h is the hard

iron offset vector and c is the calibrated measurement vector.

26

3. Methodology

The cause of soft iron bias is similar to the previously detailed offset, however in

case of soft iron distortion the magnetic field of the object is not additive to Earth’s field,

but distortive. In this case, after rotating the magnetometer around all of its axes, the

measured points show an ellipsoid orientation instead of the sphere it is theoretically

supposed to. The theoretical equation for applying soft iron correction is c = S ·m, where

c is the calibrated measurement vector, S is the soft iron calibration matrix and m is the

uncalibrated measurement vector.

Our soft iron correction calculation is based on Kris Winer’s explanation[28] of a

computationally less expensive method which is suitable for our application as we avoided

strong static magnetic fields during our measurements. With this method our soft iron

calibration matrix S looks like the following:

S =

f

g1
0 0

0 f
g2

0

0 0 f
g3

, where

g =

xmax − xmin

ymax − ymin

zmax − zmin

 and f =
g1 +g2 +g3

3

As S is a diagonal matrix, no actual matrix operations need to be performed in order

to calculate soft iron bias.

After applying the calibrations, the calibrated values visualized should look like a

sphere around the center of our coordinate system as the example shows in Figure 3.11.

27

3. Methodology

Figure 3.11: An example for magnetometer measurements before and after calibration.
Axes represent magnetic field intensity in milligauss. [29]

28

Chapter 4

Implementation

While designing the software system, the main idea was to build a robust framework

which enables easy integration of various mapping methods and supports further

extensibility in the future. We implemented our prototype solution as the continuation of

an already existing project available online on GitHub1. The implementation was carried

out in standard C++14 (primarily due to the existing codebase), with a wide usage of the

PCL2 software library.

4.1 Architecture overview

From a higher abstract overview, the program implements the producer-consumer

design pattern, with the product being the assembled map (the merged point cloud) up

until that point in time. The producer begins with a grabber, which is responsible for

providing the input LiDAR cloud, as described in section 4.3 in details.

After grabbing the input cloud, it is forwarded to the processing pipeline. This pipeline

is assembled of so called processors, each representing a Point cloud → Point cloud

custom method (modification) of a point cloud, which then becomes the input for the

next processor in the pipeline. These processors can perform a variety of tasks, the most

prominent of which are filtering the input, calculating and applying the transformation

required for the mapping, or merging the new input cloud into our so-far built map, but

the interface of taking a point cloud and returning one can be used for other tasks as well.

Our system allows for easy customization of the pipeline, be it the selection of processors

1https://github.com/mcserep/lidar-processor
2https://pointclouds.org/

29

https://github.com/mcserep/lidar-processor
https://pointclouds.org/

4. Implementation

or their orders, both of which are arbitrary, although not all possible configurations are

relevant for our purposes.

After the pipeline produces the final output cloud, it is given to various consumers. In

our current system these perform desktop visualization in a window, or writing the point

cloud into an output file. An example workflow in our model can be seen in Figure 4.1

Figure 4.1: An example workflow in the model

4.2 Our contributions

Before our work, the application already had the general workflow laid out. As such,

the producer, pipeline, filtering, and major transforming elements using offline GPS or

ICP SLAM based positioning, along with the display and file writing capabilities of the

program were already developed [22].

We extended the existing codebase with a multitude of features, the most prominent

contributions being the following.

• In the previous version while using both ICP and GPS was possible, the two

methods were not using the same transformation description system, which was

refactored by making the GPS based positioning use affine transformations as well.

• We added support for reading the GPS data available from the LiDAR sensor, a

process which required implementing our own grabber described in section 4.3, as

well as solving the issues of synchronization and processing for this asynchronous

source of data.

30

4. Implementation

• For making use of the newly available IMU measurements, an ICP and IMU based

transformation method was implemented.

• To improve user understandability of the visualization, trajectory display was

added, with each segment having color based on the transformation method it was

calculated with.

4.3 Grabber

On a high level the grabber is responsible for the task of producing the point cloud

from some input source. For this PCL provides an out of the box solution, which takes

either a PCAP file path or an IP address as an input, and after assembling the point cloud

from the source, emits a signal for which a callback can be registered to.

One of our aims was reducing the number of input sources for all our data, as such

we wanted to make use of the VLP-16’s capability of having a GPS unit connected to it.

These measurements are emitted just like the point cloud, but on a different port, 8308

by default. The structure of such a PCAP recording opened in WireShark can be seen in

Figure 4.2. In the configuration seen there the packets of the point cloud are sent to the

2368 UDP port and have the payload length of 1206 bytes, whereas the GPS packet data

arrive at the 8308 UDP port and have 512 bytes of payload.

As the grabbers in PCL only process the point cloud packets, for this purpose we

implemented our own grabber extending on the VLPGrabber available in the library. For

the structure of the data packet we consulted the official user manual [30]. Although

according to the manual more unused bytes have been assigned meaning, for our purposes

these were not relevant. The structure of the packets are described in Table 4.1, with an

example shown in WireShark on Figure 4.3, with the non-unused parts being highlighted.

While the NMEA sentences [31] themselves are of variable length, they are always

terminated by the CR LF (0x0d 0x0a) bytes.

31

4. Implementation

Figure 4.2: Packets recorded from VLP-16 with connected GPS

Number of Bytes Total Byte Offset Description
42 0x0000 UDP header

198 0x002A unused
4 0x00F0 Timestamp (µs)
1 0x00F4 Pulse Per Second status, see Table 4.2
3 0x00F5 unused

variable length 0x00F8 NMEA sentence

Table 4.1: The structure of the GPS packets

Value Description
0 No PPS detected
1 Synchronizing to PPS
2 PPS Locked
3 Error

Table 4.2: PPS status values

32

4. Implementation

Figure 4.3: Structure of a GPS packet
UDP header (black)
Timestamp (red)
PPS status (blue)
NMEA sentence (green)

For the processing of GPS packets we followed a similar workflow to that of cloud

packets, as can be seen in the source code of the PCL library3. As a first step the raw

bytes are extracted and put into an asynchronous queue by a worker thread. After this

another thread observing the queue pops the packet, parses the timestamp, the PPS, then

the NMEA sentence, emitting a signal with a unified lightweight packet format only

containing latitude, longitude, elevation, and accuracy information.

The timestamp itself is a 4 byte integer being the number of microseconds elapsed

since the top of the hour, and as such is inconvenient to work with, so it is transformed by

putting it on the lower 4 of 8 bytes and adding the lower 4 bytes of the current unix time

as its top, as it can be seen in Code 4.1. The reasoning for this was simply consistency

with the cloud packets, as they use the same timestamp generation.

The NMEA sentences in the packets, according to the user manual, are either in

GPRMC or GPGGA format, but in practice looking at the packages we found plenty of

3https://github.com/PointCloudLibrary/pcl

33

https://github.com/PointCloudLibrary/pcl

4. Implementation

other formats as well, such as GPVTG or GPGSV sentences. While these could provide

useful additional information, for the time being in our prototype system only GPRMC

and GPGGA messages4 are parsed. This was done as they have sufficient information to

produce lat-long measurements for each individual packet, and frequent enough to form a

data set of usable size, with multiple data points for every second. It should be noted that

GPRMC messages do not contain DOP information, and as such a fixed 60 value is used for

these as a temporary accuracy score.

1 #include <time.h>

2

3 std:: uint64_t timestamp;

4 time_t system_time;

5 time (& system_time);

6 timestamp =

7 (system_time & 0x00000000ffffffffl) << 32 | packetTimestamp;

Code 4.1: C/C++ snippet for calculating the timestamp

4.4 The Producer

At design level this part of the workflow is the actual source of the input clouds.

The public interface of the abstract Producer class can be seen in Figure 4.4. It defines

the start and stop methods, to control the emission of data, and two handler registration

methods, the registerHandler for point clouds, the registerGPSPacketHandler for

GPS packets.

4For the structures of these, see:
https://docs.novatel.com/OEM7/Content/Logs/GPRMC.htm
https://docs.novatel.com/OEM7/Content/Logs/GPGGA.htm

34

https://docs.novatel.com/OEM7/Content/Logs/GPRMC.htm
https://docs.novatel.com/OEM7/Content/Logs/GPGGA.htm

4. Implementation

Figure 4.4: The Producer class

The class inherited from this Producer class is the GrabberProducer, which wraps

a PCL grabber and exposes its supplied data by the two handler registration methods.

PCL provides many point types for extra information beyond X , Y and Z coordinates,

such as intensity, but for our purposes the choice between these is arbitrary, with our

final type being PointXYZI, although this is easily modifiable as a template parameter

throughout our architecture.

4.5 Processor pipeline

The processor pipeline is a series of so called processors, each of which takes an input

point cloud, does some operation on it, then returns the modified cloud. The configuration

we used is visible on Figure 4.5.

Figure 4.5: The used configuration

35

4. Implementation

First, as already established, the ProcessorPipe receives its input data from the

GrabberProducer. In the pipe itself first we apply some filtering to the point cloud,

namely removing all points within a certain distance of the origin, in order to filter out

elements like the carrying vehicle or the person pushing the cart. Empirically we found

that filtering in a 2 meter wide, and arbitrarily large (32m in our case) high column was

sufficient for this.

For the next part of the pipeline we have the GPSAligner, which simply makes the

cloud processing thread wait until a GPS packet with a greater timestamp than that of the

cloud arrives, or the 1 second timeout expires. This is necessary because of the parallel

nature of the point cloud and GPS packet processing in the grabber. It is also noteworthy

that the VLP-16 sensor prioritizes the emission of point cloud data above that of the GPS

packets, meaning that a GPS packet arriving later in time could have a smaller timestamp

than a cloud packet which arrived earlier, making this sort of synchronization even more

necessary.

After the time synchronization, the IMUProcessor calculates the estimated

orientation of the sensor array (detailed in section 4.7) and pre-rotates the point cloud,

so as the SLAM based calculators can work with smaller differences when comparing the

current reading with previous results.

The CloudTransformer is responsible for calculating and applying the

transformation to properly map the current cloud frame. It contains a variety of

calculators, each based on a different method, like GPS or ICP based positioning.

These calculators take the current cloud frame as an input, and return the calculated

affine matrix [32] along with an accuracy score. After receiving the transformations the

CloudTransformer chooses the one with the highest accuracy score and applies it to the

cloud frame. The transformation itself is done incrementally, keeping track of the total

transformation up until that point, and only calculating the one step required to transform

the frame from the previous position to the current.

The last part of the pipe is the MergeTransformer, which takes the transformed

cloud frame and merges it into the final map using an octree data structure [33]. After the

final map leaves the pipe, it is then displayed in a desktop window using PCL’s built-in

PCLVisualizer, which renders the cloud map along with the trajectory of the sensor.

The transformed cloud is also exported as a LAS/LAZ file.

36

4. Implementation

4.6 Calculators

In our infrastructure calculators are the objects responsible for calculating the

transformation required to map the current cloud frame. For the uniform description of

transformations we use affine matrices provided by the Eigen library5. The class diagram

of the abstract calculator base class, as well as the TransformData class used for the

coupling of the affine transformation and the accuracy score, are shown on Figure 4.6.

Figure 4.6: The Calculator and TransformData classes

While the stringId method is only used to differentiate between the positioning

methods on display, the startData member serves a functional role. As during the run

of the program we could be switching between different calculators, it is important to

keep the individual calculators informed about what the latest actual transformation is,

for which this member is used.

The offline GPS based positioning, as stated at the beginning of the chapter, was

already implemented before we started our project [22]. For the online positioning another

calculator was implemented, which receives GPS measurements and stores them in a

thread-safe queue. While the original had support for the EOV projection system[34]

available in Hungary, for the latter this was not taken into perspective in the current phase

as it is not widely available and latitude-longitude descriptions are more general.

In our software, libpointmatcher’s6 implementation of the ICP algorithm was used.

To configure it, the guides available on the official documentation’s website at https://

libpointmatcher.readthedocs.io/en/latest/ICPWithoutYaml/ were followed.

5https://eigen.tuxfamily.org
6https://libpointmatcher.readthedocs.io/en/latest/

37

https://libpointmatcher.readthedocs.io/en/latest/ICPWithoutYaml/
https://libpointmatcher.readthedocs.io/en/latest/ICPWithoutYaml/
https://eigen.tuxfamily.org
https://libpointmatcher.readthedocs.io/en/latest/

4. Implementation

The accuracy metric is fixed 70 value at the moment, though this can be refined in the

future.

4.7 Processing IMU data

This section elaborates on how data gets transported from the individual sensor

registers to the processing pipeline and how it gets transformed on the way.

Reading and storing sensor data

When the measurement is carried out, a separate measuring program is launched

and stopped at the end of the actual test. The program creates a text file with a header

containing the following metadata:

• Time offset compared to LiDAR data (ms): measurements before this timestamp

are going to be used to initialize the filter.

• Sample period length (ms): the time amound between each measurement.

• Gyroscope sensitivity (md ps/LSB)

• Accelerometer sensitivity (mg/LSB)

• Magnetometer sensitivity (µT/LSB)

Below the header is the actual measurement data. Each line contains the following

readings:

• Elapsed time since last measurement (ms)

• Gyroscope X ,Y and Z measurement (md ps)

• Accelerometer X ,Y and Z measurement (mg)

• Magnetometer X ,Y and Z measurement (gauss)

This file is later read into memory by our LiDAR processor program which performs

the magnetometer calibrations and feeds the data into the pipeline through an AHRS filter.

38

4. Implementation

The IMUProcessor

In this project, we decided to utilize the Fusion filter library [35] developed by x-io

Technologies. The underlying AHRS algorithm is fusing the accelerometer, gyroscope

and magnetometer measurements into Euler angles (pitch, roll, yaw) or a quaternion

while updating its inner state and correcting for sensor errors and interferences. The filter

algorithm’s method of calculation is based on the PhD thesis [36] of Madgwick, which is

an improved version of the original Madgwick algorithm [37].

To make it possible to experiment with multiple filter implementations in the future,

we specified an interface through which our pipeline interacts with the algorithm. The

UML class diagram extract of this can be seen in Figure 4.7.

Figure 4.7: UML Class diagram extract of AHRSFilter

As the diagram shows, our requirements for an AHRS Filter is for it to have an update

function, which updates the inner state by having sensor readings as parameters and to be

able to present its current state as Euler angles and as a quaternion as well.

The FusionFilter realises this interface with the help of the Fusion AHRS library

and is encapsulated by the IMUProcessor. The IMUProcessor either serves the estimated

orientation as Calculator to the CloudTransformer or as a Processor, it calculates

and executes the rotation as well to serve a pre-processed cloud to the other calculators.

During our measurements we used the IMU data source as a processor, although future

developments might include using its estimations as a calculator. A simplified UML class

diagram extract of the mentioned area can be seen in Figure 4.8.

39

4. Implementation

Figure 4.8: UML Class diagram extract of the IMUProcessor

40

Chapter 5

Results

We tested our hardware and software architecture with different sensor and

environment combinations to see which sensor or algorithm compositions can effectively

enhance each other.

5.1 Recording of measurements

The recording process did not come without its own set of difficulties. As for most of

the recordings, the sensor configuration was carried around on a cart with hard wheels,

there was no dampening, resulting in observable distortion in the recorded data. Moving

objects, like other cars and pedestrians also made the task of building a static map harder

by introducing information only present in a few frames. Having to open doors on a

corridor posed a similar issue as well.

On the results shown in the upcoming sections, concentric circles can be seen in many

places of the ground. These are points the LiDAR recorded around itself along its path.

For the visual interpretation of trajectories on the images, it is useful to know that the

estimated poses are shown as spheres, with lines connecting them, although the former

might not be visible when zoomed out.

For the shown ground truth satellite imagery, Google Maps and Google Earth was

used, available at https://www.google.com/maps and https://earth.google.com/

web/ respectively.

41

https://www.google.com/maps
https://earth.google.com/web/
https://earth.google.com/web/

5. Results

5.2 Mapping with only GPS

While our main focus was more about using more methods together, we did tests with

LiDAR-GPS setups as well. This did produce fairly good results, although was much

reliant on having good signal availability.

5.2.1 Offline GPS

The transformation itself is calculated the same way for both online and offline GPS,

but other factors, like having all data available for pre-processing with a kalman filter

make grounds comparison of the two.

Under almost ideal circumstances, being outdoors with no overshadowing high-rise

buildings nearby, the mapping was quite accurate. Such a map can be seen on Figure 5.1

with ground truth being shown on Figure 5.2.

Figure 5.1: The final mapping under close to ideal circumstances

42

5. Results

Figure 5.2: The ground truth

Although there is some distortion, and the large amount of greenery add noise to the

image, the major shapes, like the bottom wall of the top building, or the concentric ellipses

around the arena due to the slope of its sides are quite distinctive.

For the next example, the sensors were pushed through the inside of a mall for a longer

section, during which no signal was available, up until exiting on the other side. Although

this is more meant for a combined GPS - ICP approach, the performance of the Kalman

filter can be interesting nevertheless. The attempted mapping can be seen on Figure 5.3,

with the ground truth being shown on Figure 5.4.

43

5. Results

Figure 5.3: The GPS only mapping when going through a building

44

5. Results

Figure 5.4: The GPS only mapping when going through a building

Here the algorithm performed about as well as it can be expected. The Kalman filter

did a good job of connecting the last point before losing signal to the first one after

regaining it, but the inside part contained a turn the filter had no chance of resolving.

5.2.2 Online GPS

For this configuration we mostly did measurements for fusion with other approaches,

and as such the constantly changing signal quality lead to results similar to those in

the previous example. Also as this approach does not encompass a Kalman filter, just

polynomial extrapolation for missing data points, the results had more distortion when

the measurements had inaccuracy to begin with.

A measurement which showcases many aspects of our general results was taken

attached to the top of a car. First, the vehicle leaves the the parking lot it started in, then

travels through a number of roads, waits for a traffic light, then does an uninterrupted

section on a straight, long road.

45

5. Results

The measurement had some inaccuracies, leading to distortion in the mapping and the

trajectory. In the offline case, this might be corrected by the Kalman filter, but in this case,

as it can be seen in Figure 5.5 it did show up.

Figure 5.5: Inaccuracy in the measurement seen in the trajectory

Travelling on roads comes with traffic lights and other cases when the vehicle must

temporarily stop. As the GPS was not accurate enough to send the exact same position

coordinates and the online processing does not incorporate data correction in the current

stage, the in-place position was not recognized properly, and end up being multiple

positions with slight distances between them as shown by the trajectory in Figure 5.6.

46

5. Results

Figure 5.6: The predicted set of poses for the in-place ground truth

That being said, when the vehicle was traversing a long, straight road, with good

signal availability, the method did produce good results, an example of which can be seen

on Figure 5.7, with the ground truth show on Figure 5.8.

Figure 5.7: Mapping created by the car travelling on a long, straight road

47

5. Results

Figure 5.8: Ground truth along the road

5.3 Mapping with only ICP

Relying just on ICP for mapping had its issues as well. As mentioned before in

chapter 2 and chapter 3, in order to produce good results the method largely relies on

having a decent input. Sharp turns in the path pose another issue, due to the sparsity of

frames during taking the turn.

One measurement we took, was taking a rectangular path with a handcar in the inside

of a building. While the algorithm successfully mapped through the first turn, for the

second and third turns the angle was not successfully estimated, resulting in a distorted

path, as well as 3 rotated overlapping maps of the area. The successful rotation on the the

first turn can be attributed to the turn being taken slower, which enabled the LiDAR to

have more frames of the turn itself. The results of this mapping can be seen on Figure 5.9

48

5. Results

Figure 5.9: Mapping on a rectangular path before(top) and after(bottom) the second turn

Another measurement which showcases the first issue, namely not having good

enough input was made by having the LiDAR on top of a car coming out of an

underground garage. As the vehicle moves at a higher speed, the translation between the

frames is greater too, making ICP not being able to find the proper match and settle for a

49

5. Results

local minimum. As it can be seen on Figure 5.10, this results in the walls perpendicular

to the direction of motion getting mismatched.

Figure 5.10: Missed matching on the walls on the right due to higher speeds

5.4 Evaluation of single method approach

As described in the previous sets of results, using a single approach for positioning –

while capable of producing good results under the right circumstances –, is ultimately too

dependent on the conditions. By pinpointing the difficulties of the individual methods, a

complementing solution can be added to cover for the problematic cases.

• For the GPS the main issue is the poor quality or total lack of signal. While this can

somewhat be remedied by using a Kalman filter, for indoors use the better solution

is combining it with another positioning method which can function indoors too.

For this, ICP based positioning was our choice.

• For the ICP method the issue is the data sparsity of the LiDAR leading to difficulties

matching frames with larger rotations (taking a turn) or translations (higher speed)

between them. This is a well known issue leading to solutions like LOAM. In our

application we use the IMU data to help with the initial odometry of the frame.

50

5. Results

5.5 Mapping with GPS and ICP SLAM combined

The combination of the GPS and ICP based positioning mainly provided a fallback

for less accurate GPS measurements in the form of ICP based mapping, as the former is

usually superior in accuracy.

A good demonstration of this is the example showed earlier in section 5.2. Inside the

mall, due to the low quality signal the software switches to using ICP, which does a decent

job of mapping the interior of the building, which can be seen on Figure 5.11.

Figure 5.11: The interior of the mall as mapped by the switching to ICP

That being said, the image itself is quite noisy, due to the complex interior of

the building with features like crossing corridors, multi-level structure and overhead

walkways. The predicted trajectory is visible on Figure 5.12, with the ground truth already

shown on Figure 5.4.

51

5. Results

Figure 5.12: The trajectory of the sensor as predicted by GPS (green) and ICP (black)

Other issues of GPS based positioning explained in subsection 5.2.2 could suggest the

use of a LOAM framework with GPS odometry and ICP mapping, but in our research this

has not been explored yet.

5.6 Mapping with IMU and ICP SLAM combined

Complementing the calculations with IMU data has proven to be quite effective,

especially around corners, where it is difficult for the ICP algorithm to determine the

amount of the rotation due to the low number of frames.

5.6.1 Indoor corridor

An area where the assistance of the IMU sensor can be examined well is an indoor

corridor, where due to the lack of characteristics and sharp turns, the ICP algorithm’s

52

5. Results

ability to accurately track movement is significantly impaired. During this test, our cloud

merging algorithm was seriously affected as well, therefore the resulting point does not

clearly show the architecture of the building. The odometry seen in the following figures

however, is rather promising.

Figure 5.13: Path of the indoor corridor measurement

Figure 5.13 shows the path we scanned during the experiment. We marked the location

of the glass door on the path because glass surfaces can introduce artifacts in LiDAR

measurements which can affect the SLAM algorithm, and the carrying vehicle had to be

stopped for a brief time as well. A slight path error can be seen because of this in both

measurements in Figure 5.14.

53

5. Results

Figure 5.14: Comparison of the paths calculated via ICP (top) and IMU-assisted ICP
(bottom)

As Figure 5.14 shows, improvements have been achieved around the corners, where

the ICP algorithm introduced errors. One of the errors at the left corner was not corrected

even with IMU assistance, but such anomaly can be later filtered by an algorithm such as

a Kalman filter.

5.6.2 Indoor and outdoor combined

To demonstrate the effects of IMU assistance on a larger scale, we arranged a

combined measurement in which the vehicle departs in an outside environment containing

vegetation, a building wall and occasionally walking people. The vehicle then enters the

building on the left side and travels the shortest path to the exit on top. This test includes

people moving inside the building as well as corridors similar to the indoor measurement.

The path traveled can be seen in Figure 5.15.

54

5. Results

Figure 5.15: Path of the combined measurement

55

5. Results

Figure 5.16: Calculated path (white) by ICP algorithm without IMU assistance

As seen in Figure 5.16 the ICP SLAM algorithm did fairly well during the first two

thirds of the path. Around the last two corners however there are similar corridors to

the first experiment and the algorithm could not correctly map the exit section from the

building.

Figure 5.17: Calculated path (white) by ICP algorithm with IMU assistance

56

5. Results

Figure 5.17 shows how the cloud pre-rotation of the IMU processor prevented the ICP

algorithm from calculating a faulty final direction. Corrections can still be applied to the

shown result, the overall directions however are preserved, which is a good starting point

for further improvements.

The final mapping after processing this data set is rather promising as well considering

our LiDAR sensor has 16 channels. Figure 5.18 shows the 3D model of the captured are

modelled by the Google Earth application. Figure 5.19 shows the final point cloud from a

similar angle.

Figure 5.18: ELTE Southern block modeled by Google Earth

Figure 5.19: ELTE Southern block modeled by our LiDAR pipeline

57

5. Results

As the previous results show, rotating the point cloud according to IMU data as a

pipeline step before determining translation via a SLAM algorithm is a promising method

of fusing these two data sources together.

5.7 Evaluation of combined approach

As shown previously, fusing the output of single methods indeed improves the

versatility of the mapping process.

• Combining GPS with ICP SLAM helps with solving the problem of the poor or

non-existent GPS signal. As soon as the GPS accuracy metric signifies a signal

loss, the ICP SLAM can take over and continue mapping the area.

• The fusion of IMU data and ICP SLAM produces significantly better results in

narrow corridors and sharp turns, where the SLAM algorithm loses track of the

trajectory either because the lack of features in the environment or drastic changes

in the orientation.

These improvements turned previously unusable results into recognizable reproductions

of the scanned areas, leading us to the conclusion, that these sources of information can,

and should be utilized together.

58

Chapter 6

Conclusion

The main goal of our work was to evaluate and compare different LiDAR mapping

methods and their combinations, ranging from external odometry devices, like GNSS

sensors or an IMU, to purely mathematical SLAM approaches. For the positioning

methods, online and offline GPS with slightly different workflow, the ICP algorithm,

and ICP with IMU assisted odometry were implemented. The issue of unifying them

in a common transformation description system was solved. For online GPS processing

the difficulties of data synchronization and timing, which come naturally with the

asynchronous workflow were solved.

While under the proper circumstances just GPS or ICP could produce good results,

combinations of them or enhancement via other odometry like IMU for ICP did

improve results. Upon inspection of the taken measurements often further problems were

discovered, like the need of proper calibration for the IMU sensor, or the mechanical

spinning component of the LiDAR causing interference in the IMU’s magnetometer.

We’ve also made efforts towards real-time mapping with the introduction of online

GPS parsing, as well as using a Rasberry Pi for data recording, however, turning our

model into a real-time solution will be the objective of a future research.

Our research was implemented as the extension of the foundations established by Máté

Cserép and Roxána Provender, who built a highly customizable pipeline infrastructure for

future development [22].

59

6. Conclusion

6.1 Future work

While we did get promising results from our current integration of the used methods,

they were still somewhat rudimentary in their implementation at some parts. An example

of this is the use of a quite basic SLAM approach in ICP, instead of something more

state-of-the-art, like a LOAM framework.

We successfully introduced additional sensor data into the system in the form of an

IMU, but further usage of the information from this could be explored.

The vertical combination of the used methods also has further ways to go,

experimenting with systems like GPS odometry – ICP mapping, with even possibly

having IMU aid could yield promising results.

From a more software-oriented viewpoint, we have accumulated a number of data

sources by now, each requiring different capture software, as such developments towards

separated capture and processing binaries could improve ease of use. For better real-time

performance, assigning the independent transformation tasks to separate processing cores

could result in better runtime. Another approach for this could also be making use of

the separated capture-processing model and making the latter into a cloud application to

remotely handle the computationally expensive parts.

60

Acknowledgements

The thesis project and research was completed in the GIS Laboratory1 of the Eötvös

Loránd University. The project was supported through a student research scholarship

program of the Faculty of Informatics.

We would like to express our gratitude to our supervisor, Máté Cserép, for his

guidance through the stages of the research work. We are grateful to Bandó Kovács,

institute engineer at the Faculty, for the designing and 3D printing of custom parts, as

well as for technical advice.

We would also like to express our appreciation to former master students in the

GIS Laboratory for their prior work providing preliminary results and an established

software framework for our thesis to build on. Thanks to Roxána Provender for the

original, file-based GPS positioning, and to Levente Kiss for implementing the ICP based

positioning, as well as his theoretical overview of the method.

1https://gis.inf.elte.hu/

61

https://gis.inf.elte.hu/

Bibliograhpy

[1] Teledyne Digital Imaging, Inc. Teledyne CL-360. [Online; accessed April 24,

2022]. URL: https://www.teledyneoptech.com/en/products/compact-

lidar/cl-360/.

[2] Colorado State University. GPS principles. [Online; accessed April 24, 2022].

2020. URL: https://trakkitgps.com/how-gps-works/.

[3] Nanjing Sky MEMS Technology Co.,Ltd. SkyMEMS 6 Dof IMU Sensor. [Online;

accessed April 24, 2022]. URL: http://www.inssensor.com/imu/6-dof-imu-

sensor.html.

[4] Feng Lu and Evangelos Milios. “Globally consistent range scan alignment for

environment mapping”. In: Autonomous robots 4.4 (1997), pp. 333–349.

[5] Mahalanobis Prasanta Chandra et al. “On the generalised distance in statistics”.

In: Proceedings of the National Institute of Sciences of India. Vol. 2. 1. 1936,

pp. 49–55.

[6] P.J. Besl and Neil D. McKay. “A method for registration of 3-D shapes”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (1992),

pp. 239–256. DOI: 10.1109/34.121791.

[7] Victor Lamoine. Interactive ICP. [Online; accessed May 2, 2022]. 2018. URL:

https : / / pcl . readthedocs . io / projects / tutorials / en / latest /

interactive_icp.html.

[8] Ji Zhang and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in Real-time.”

In: Robotics: Science and Systems. Vol. 2. 9. Berkeley, CA. 2014, pp. 1–9.

[9] Han Wang et al. “F-loam: Fast lidar odometry and mapping”. In: 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021,

pp. 4390–4396.

62

https://www.teledyneoptech.com/en/products/compact-lidar/cl-360/
https://www.teledyneoptech.com/en/products/compact-lidar/cl-360/
https://trakkitgps.com/how-gps-works/
http://www.inssensor.com/imu/6-dof-imu-sensor.html
http://www.inssensor.com/imu/6-dof-imu-sensor.html
https://doi.org/10.1109/34.121791
https://pcl.readthedocs.io/projects/tutorials/en/latest/interactive_icp.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/interactive_icp.html

BIBLIOGRAHPY

[10] Zheng Liu and Fu Zhang. “Balm: Bundle adjustment for lidar mapping”. In: IEEE

Robotics and Automation Letters 6.2 (2021), pp. 3184–3191.

[11] Jianhao Jiao et al. “Robust odometry and mapping for multi-lidar systems with

online extrinsic calibration”. In: IEEE Transactions on Robotics (2021).

[12] Luca Caltagirone et al. “LIDAR–camera fusion for road detection using fully

convolutional neural networks”. In: Robotics and Autonomous Systems 111 (2019),

pp. 125–131.

[13] Le Chang, Xiaoji Niu, and Tianyi Liu. “GNSS/IMU/ODO/LiDAR-SLAM

integrated navigation system using IMU/ODO pre-integration”. In: Sensors 20.17

(2020), p. 4702.

[14] Xingxing Zuo et al. “Lic-fusion: Lidar-inertial-camera odometry”. In: 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE. 2019, pp. 5848–5854.

[15] Hanzhang Xue, Hao Fu, and Bin Dai. “IMU-aided high-frequency lidar odometry

for autonomous driving”. In: Applied Sciences 9.7 (2019), p. 1506.

[16] S Karam, V Lehtola, and G Vosselman. “Strategies to integrate IMU and LiDAR

SLAM for indoor mapping”. In: ISPRS Annals of the Photogrammetry, Remote

Sensing and Spatial Information Sciences 1 (2020), pp. 223–230.

[17] Raspberry Pi Ltd. Raspberry Pi 4 model B. [Online; accessed April 28, 2022].

2018. URL: https://www.raspberrypi.com/products/raspberry-pi-4-

model-b/specifications/.

[18] Velodyne Lidar, Inc. Velodyne VLP-16 LiDAR sensor. [Online; accessed April 30,

2022]. 2019. URL: https://velodynelidar.com/products/puck/.

[19] MediaTek Inc. MediaTek MT3339 all-in-one GPS datasheet. Tech. rep. version 1.0.

[Online; accessed May 9, 2022]. Jan. 2017. URL: https://cdn.compacttool.

ru/downloads/MT3339_Mediatek_Datasheet.pdf.

[20] OzzMaker. BerryGPS-IMU V4. [Online; accessed April 27, 2022]. URL: https:

//ozzmaker.com/product/berrygps-imu/.

[21] Subirana J. Sanz, Zornoza JM. Juan, and Hernandez-Pajares M. GNSS signal.

[Online; accessed May 8, 2022]. 2011. URL: https : / / gssc . esa . int /

navipedia/index.php/GNSS_signal.

63

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://velodynelidar.com/products/puck/
https://cdn.compacttool.ru/downloads/MT3339_Mediatek_Datasheet.pdf
https://cdn.compacttool.ru/downloads/MT3339_Mediatek_Datasheet.pdf
https://ozzmaker.com/product/berrygps-imu/
https://ozzmaker.com/product/berrygps-imu/
https://gssc.esa.int/navipedia/index.php/GNSS_signal
https://gssc.esa.int/navipedia/index.php/GNSS_signal

BIBLIOGRAHPY

[22] Roxána Provender. “Spatial localization of LiDAR point clouds by sensor fusion”.

https://edit.elte.hu/xmlui/handle/10831/56231. MSc thesis. ELTE,

Faculty of Informatics, 2020.

[23] Richard B Langley et al. “Dilution of precision”. In: GPS world 10.5 (1999),

pp. 52–59.

[24] Rudolph Emil Kalman. “A new approach to linear filtering and prediction

problems”. In: (1960).

[25] C Carl Robusto. “The cosine-haversine formula”. In: The American Mathematical

Monthly 64.1 (1957), pp. 38–40.

[26] Ellon Mendes, Pierrick Koch, and Simon Lacroix. “ICP-based pose-graph SLAM”.

In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics

(SSRR). IEEE. 2016, pp. 195–200.

[27] Kok-Lim Low. “Linear least-squares optimization for point-to-plane icp surface

registration”. In: Chapel Hill, University of North Carolina 4.10 (2004), pp. 1–3.

[28] Kris Winer. Simple and Effective Magnetometer Calibration. [Online; accessed

May 4, 2022]. 2017. URL: https://github.com/kriswiner/MPU6050/wiki/

Simple-and-Effective-Magnetometer-Calibration.

[29] Andre Amador and Miguel Canals. “Probing the Hydrodynamics of Plunging

Gravity Waves Through Lagrangian Observations of Inertial Particle Dynamics”.

PhD thesis. July 2013, p. 73. DOI: 10.13140/RG.2.2.14948.30089.

[30] Velodyne Lidar, Inc. VLP-16 User Manual. Tech. rep. [Online; accessed May 4,

2022]. 2019. URL: https://velodynelidar.com/wp- content/uploads/

2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf.

[31] National Marine Electronics Association. NMEA 0183 - Standard For Interfacing

Marine Electronic Devices. Tech. rep. [Online; accessed May 10, 2022]. 2002.

URL: https://www.plaisance-pratique.com/IMG/pdf/NMEA0183-2.pdf.

[32] A.H. Watt. 3D Computer Graphics. 3D COMPUTER GRAPHICS.

Addison-Wesley, 2000. ISBN: 9780201398557. URL: https : / / books .

google.hu/books?id=xOYBkgAACAAJ.

[33] Hanan Samet. The design and analysis of spatial data structures. Vol. 85.

Addison-Wesley Reading, MA, 1990.

64

https://edit.elte.hu/xmlui/handle/10831/56231
https://github.com/kriswiner/MPU6050/wiki/Simple-and-Effective-Magnetometer-Calibration
https://github.com/kriswiner/MPU6050/wiki/Simple-and-Effective-Magnetometer-Calibration
https://doi.org/10.13140/RG.2.2.14948.30089
https://velodynelidar.com/wp-content/uploads/2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf
https://www.plaisance-pratique.com/IMG/pdf/NMEA0183-2.pdf
https://books.google.hu/books?id=xOYBkgAACAAJ
https://books.google.hu/books?id=xOYBkgAACAAJ

BIBLIOGRAHPY

[34] EOV coordinate system. [Online; accessed May 8, 2022]. URL: http://lazarus.

elte.hu/gb/geodez/geod2.htm.

[35] x-io Technologies. Fusion AHRS library. [Online; accessed May 4, 2022]. 2021.

URL: https://github.com/xioTechnologies/Fusion.

[36] Sebastian O. H. Madgwick. “AHRS algorithms and calibration solutions to

facilitate new applications using low-cost MEMS”. In: University of Bristol,

EThOS. 2014. URL: https://ethos.bl.uk/OrderDetails.do?uin=uk.

bl.ethos.681552.

[37] Sebastian O. H. Madgwick. “An efficient orientation filter for inertial and

inertial/magnetic sensor arrays”. In: [Online; accessed May 4, 2022]. 2010. URL:

https://courses.cs.washington.edu/courses/cse474/17wi/labs/l4/

madgwick_internal_report.pdf.

65

http://lazarus.elte.hu/gb/geodez/geod2.htm
http://lazarus.elte.hu/gb/geodez/geod2.htm
https://github.com/xioTechnologies/Fusion
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681552
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681552
https://courses.cs.washington.edu/courses/cse474/17wi/labs/l4/madgwick_internal_report.pdf
https://courses.cs.washington.edu/courses/cse474/17wi/labs/l4/madgwick_internal_report.pdf

List of Figures

2.1 Teledyne CL-360 LiDAR sensor [1] . 5

2.2 GNSS principles illustrated simply [2] 6

2.3 SkyMEMS 6 Dof IMU Sensor [3] . 6

2.4 A single ICP iteration visualized [7] . 8

2.5 The two step localization and mapping [8] 9

2.6 GNSS/IMU/ODO/LiDAR-SLAM navigation errors 11

2.7 Top view of outdoor sequence trajectories 11

3.1 Indoor hardware composition . 14

3.2 Outdoor hardware composition . 14

3.3 Raspberry Pi 4 model B . 15

3.4 Velodyne VLP-16 . 16

3.5 VeloView 4.1.3 . 16

3.6 BerryGPS-IMU V4 . 17

3.7 Mounting structure for the onboard computer and IMU 18

3.8 Comparison of the external GPS and onboard GNSS sensor to the ground

truth . 19

3.9 The original route (green) corrected by Kalman filter (red) 20

3.10 Point to plane distance [27] . 25

3.11 An example for magnetometer measurements before and after calibration.

Axes represent magnetic field intensity in milligauss. [29] 28

4.1 An example workflow in the model . 30

4.2 Packets recorded from VLP-16 with connected GPS 32

4.3 Structure of a GPS packet . 33

4.4 The Producer class . 35

4.5 The used configuration . 35

4.6 The Calculator and TransformData classes 37

66

LIST OF FIGURES

4.7 UML Class diagram extract of AHRSFilter 39

4.8 UML Class diagram extract of the IMUProcessor 40

5.1 The final mapping under close to ideal circumstances 42

5.2 The ground truth . 43

5.3 The GPS only mapping when going through a building 44

5.4 The GPS only mapping when going through a building 45

5.5 Inaccuracy in the measurement seen in the trajectory 46

5.6 The predicted set of poses for the in-place ground truth 47

5.7 Mapping created by the car travelling on a long, straight road 47

5.8 Ground truth along the road . 48

5.9 Mapping on a rectangular path before(top) and after(bottom) the second

turn . 49

5.10 Missed matching on the walls on the right due to higher speeds 50

5.11 The interior of the mall as mapped by the switching to ICP 51

5.12 The trajectory of the sensor as predicted by GPS (green) and ICP (black) . 52

5.13 Path of the indoor corridor measurement 53

5.14 Comparison of the paths calculated via ICP (top) and IMU-assisted ICP

(bottom) . 54

5.15 Path of the combined measurement . 55

5.16 Calculated path (white) by ICP algorithm without IMU assistance 56

5.17 Calculated path (white) by ICP algorithm with IMU assistance 56

5.18 ELTE Southern block modeled by Google Earth 57

5.19 ELTE Southern block modeled by our LiDAR pipeline 57

67

	Introduction
	Related Work
	The point cloud positioning problem
	Hardware options
	Software options
	SLAM
	Iterative Closest Point
	LiDAR Odometry and Mapping
	State-of-the-art methods with LOAM foundations
	Machine Learning approaches

	Fusion

	Methodology
	Hardware
	The carrying vehicle
	The onboard computer
	The LiDAR sensor
	The external GPS unit
	The inertial measurement unit
	Measurement experiences

	Software
	GNSS based positioning
	ICP based positioning
	IMU based orientation estimation

	Implementation
	Architecture overview
	Our contributions
	Grabber
	The Producer
	Processor pipeline
	Calculators
	Processing IMU data

	Results
	Recording of measurements
	Mapping with only GPS
	Offline GPS
	Online GPS

	Mapping with only ICP
	Evaluation of single method approach
	Mapping with GPS and ICP SLAM combined
	Mapping with IMU and ICP SLAM combined
	Indoor corridor
	Indoor and outdoor combined

	Evaluation of combined approach

	Conclusion
	Future work

	Acknowledgements
	Bibliograhpy
	List of Figures

