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Chapter 1

Introduction

Recently the need for creating accurate planar and three-dimensional maps of

indoor and outdoor environment is increasing in fields of robotics and autonomous

car industry. The advancement in the LiDAR technology made sensors capable of

creating accurate dense point cloud representation of its environment regardless most

weather conditions. Due to these good characteristics and decreasing cost nowadays

this sensor becomes more and more popular in robotics and self-driving car industry.

The topic of this thesis is the evaluation of the fully automatized localization

of a dynamically acquired point cloud in space, using the fusion of several sensors’

output. The aim of the research is to present a framework that can calibrate the

spatial position of a point cloud generated by a moving LiDAR sensor with the

help of other sensor outputs (high precision geodetic GNSS, mobile GNSS). The

framework is able to combine different inputs in order to position the generated

point cloud in 3 dimensional space in a completely unattended way with the highest

possible accuracy. The program heuristically weights the signal reliability of the

localization sensors used and thus decides which sensor gives the best results.

The program can dynamically calibrate the position gained by this combination

of sensors during its run to generate and localize the collected point cloud. The

thesis details the difficulties and problems arising from the different characteristics

of the different sensors and the techniques used to solve them.

The thesis specializes for outdoor measurements, as GNSS sensors mainly give

a suitable signal there, but the flexibility of the presented architecture shows that

it can be easily supplemented for indoor measurements by adding the appropriate

3



1. Introduction

sensors or algorithms (e.g. IMU or SLAM).

The implementation is implemented in C++ using the Point Cloud Library

(PCL) software library, taking advantage of its diverse collection of functions for

the point cloud.
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Chapter 2

Background and related work

The thesis is based on two main technologies: On Light Detection and Ranging

(LiDAR) and on Global Navigation Satellite System (GNSS). In this chapter, their

characteristics, operation and related concepts are described. Related work to the

synchronization of the above-mentioned technologies will also be presented.

2.1 Light Detection and Ranging (LiDAR)

The Light Detection and Ranging (LiDAR) is a method to determine the dis-

tances between the emitting device and some kind of reflective surface, by illumi-

nating the target with laser light and measuring the reflected light with a sensor, as

shown in Fig. 2.1.

Figure 2.1: Operation of a LiDAR sensor

Source: IIT Kanpur, http://home.iitk.ac.in/~blohani/
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2. Background and related work

The sensor uses the time it took for each pulse to return to the sensor to calculate

the distance it travelled. By repeating this process – with state of the art sensors –

even more than a million of times per second, we produce an accurate, real-time 3D

map of the environment. It is commonly used to make high-resolution maps, with

applications in many areas, like geography, archaeology, security, robotic and also in

control and navigation for self-driving cars. The method is provided by the LiDAR

sensor, which is an active remote sensing system with its own source of signal. Most

LiDAR systems have a single laser that fires onto a rotating mirror. In Fig. 2.2 we

can see a typical example for an urban scene point cloud, created by LiDAR sensor.

Figure 2.2: LiDAR point cloud for urban scene

Source: www.geospatialworld.net

2.1.1 Data acquisition

Looking at the platform with LiDAR sensor, a distinction can be made between

terrestrial and airborne types. The area to be explored and the available budget

plays an important role in the choice, which one to use.

Airborne LiDAR scanning (ALS)

In the case of airborne LiDAR the sensor is attached to a flight-capable device,

and creates a 3D point cloud from the air. This variety is becoming more and more

popular nowadays, because as we can see in Fig. 2.3, it makes it quick and easy to
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2. Background and related work

map large areas. In the airborne LiDAR category, a distinction is sometimes made

between high altitude and low altitude, but the main difference is a decrease in the

accuracy and point density of data obtained at higher altitudes.

Figure 2.3: Airborne LiDAR scanning

Source: medium.com

Terrestrial scanning

Terrestrial applications of LiDAR (also terrestrial laser scanning) happen on the

Earth’s surface and can be either stationary or mobile. During stationary terres-

trial scanning, as shown in Fig. 2.4, the sensor is in a fixed position. This is most

commonly used as a survey method, for example in traditional topographic applica-

tions, geomorphology, and deformation analysis. In many cases, the point cloud is

matched with some other digital image of the given area, in such a way that each

point is colored from the pixel of the digital image that falls at the same angle. Due

to this, we can get a realistic point cloud from the studied area relatively quickly

and cheaply, compared to other methods.

In the case where the LiDAR sensor is mounted on a moving device, we speak

about mobile scanning. In most cases, the LiDAR sensor is paired with another

sensor, which is capable of detecting the change of the position, such as a GNSS or

IMU sensor. This method can be used to create a large 3D point cloud from cities,
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2. Background and related work

Figure 2.4: Terrestrial LiDAR scanning

Source: University of Göttingen, Forest Inventory Remote Sensing WIKI

Figure 2.5: Visualization of the 3D point cloud and recognized objects by Google’s

autonomous self driving car. Source: Google
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2. Background and related work

streets, railway lines, and so on. Today it is most commonly used in self-driving

cars and robotics. The Fig. 2.5 shows a point cloud, created by a LiDAR sensor on

top of a moving car. The information obtained in this way greatly helps to identify

individual traffic situations. The current study also presents the application and

difficulties of the moving LiDAR sensor.

2.1.2 Data formats

There are multiple open and proprietary file formats for storing point cloud

generated by a LiDAR sensor with LAS/LAZ being the most widespreadly used in

the field of remote sensing.

However, before the point cloud is localized and pre-processed, the raw data

is often saved (or streamed) in a manufacturer dependent format like PCAP for

Velodyne sensors.

PCAP

The PCAP format is designed to capture network packets. The PCAP file format

is a binary format, with support for nanosecond-precision timestamps. A .pcap file is

a digital data storage container, composed of captured data prefixed with a header

(Global Header) and interlaced with chunks of metadata (Packet Header). The global

header contains GMT offset, timestamp precision, the maximum length of captured

packets (in octets), and the data link type. This information is followed by zero or

more records of captured packet data (See: Fig. 2.6).

Figure 2.6: PCAP file structure

Source: elvidence.com.au
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2. Background and related work

Each captured packet contains the UNIX epoch timestamp in seconds, the num-

ber of octets of packet saved in file, and the length of the packet. The capture packets

are also known as frames [1].

In the case of the LiDAR sensor, each frame contains a point cloud for the

given time. Using the PCAP file format, the entire measurement can be replayed,

providing great repeatability of processing the data.

LAS/LAZ

The LAS (LASer) format [2] is a file format designed for exchanging and archiving

LiDAR point cloud data. The format is widely used and it is considered as an

industry standard for LiDAR data.

The format contains binary data consisting of a header block, variable length

records, and point data. The points are not ordered by any attribute or spatially

indexed. The role of each block is shown in Table 2.1.

Public Header Block Describes format, number of points, extent of the

point cloud and other generic data.

Variable Length Records Any number of optional records to provide vari-

ous data such as the spatial reference system used,

metadata, waveform packet information and user

application data.

Point Data Records Data for each of the individual points in the point

cloud, including X,Y,Z coordinates, intensity, clas-

sification (e.g. terrain or building), flight and scan

data, etc.

Table 2.1: LAS Format Definition (Source: Wikipedia)

LAS projects can be very large (most often more GB) therefore compression is

often used on it. LAZ [3] is a losslessly compressed variant of LAS.
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2. Background and related work

2.2 Global Navigation Satellite System (GNSS)

The principle of operation of a Global Navigation Satellite System (GNSS) [4] is

based on the fact that the current 3D position can be determined by knowing the

coordinates and the distance of any three points in space. GNSS is a collective name

for the navigation system, based on this principle. The best known and most used

systems are:

• Navstart Global Positioning Sytem (GPS), which is a space-based radio nav-

igation system owned by the United States Government (USG) and operated

by the United States Air Force.

• GLONASS, which is developed by the Russian Federation, mostly used as a

supplement of GPS to improve positioning in high latitudes in the civil sphere,

but for military usage it is a true "rival" for GPS.

• Galileo, the Europe’s Global Navigation Satellite System, made available by

the European Union in 2016 after 5 years of launching and orbiting the satel-

lites. Galileo is the only completely civilian and commercial system without

military purposes among these four.

• BeiDou, which is a Chinese satellite navigation system. Originally only offer-

ing services to inland Chinese users, then to the Asia-Pacific region, lately it

started providing global services in 2018.

Among the four mentioned systems, only GPS and GLONASS provide true global

constellation and therefore coverage, while Galileo and BeiDou aim to reach it in

2020. The most used system in the western world is the GPS. The main source of

GNSS receivers used in this thesis is also the GPS signal.

GPS signals include ranging signals, used to measure the distance to the satellite,

and navigation messages [5]. The original GPS design contains two ranging codes:

The Coarse/Acquisition (C/A) code, which is freely available to the public, and

the Restricted Precision (P) code, usually reserved for military applications. Until

2000, signals received by civilians were intentionally disturbed – called as Selective

Availability (SA) and caused ∼ 50m horizontal and ∼ 100m verodoical error –

to prevent perfect accuracy. However, the C/A code was far from perfect in 2000,
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2. Background and related work

even without SA. Without the new signals introduced since then, the receivers had

accuracy around ∼ 5m.

Nowadays, there are four signals available for civilian use. In order of date of

introduction, these are: L1 C/A, L2C, L5 and L1C. L1 C/A, which is broadcasted

by all satellites, is also called legacy signal. The other 2 (modernized) signals are

called the second and third civil signals and are not broadcast by all satellites, but

by the ones launched later in time. With the new signals a modern GPS receiver

can achieve ∼ 0.5m precision.

The signals can be distorted by a variety of errors, such as ephemeris errors

(satellites are affected by forces such as the Earth’s gravitational field or different

solar winds) or propagation errors (the GNSS signal must pass through the Earth’s

atmosphere, which usually delays and distorts the signal) [6].

Of course, as with any other sensor, accuracy is affected by the type and the

price of the GNSS sensor. The cheaper sensors (such as those used in mobiles)

typically have an accuracy of ∼ 2− 4m. In order to achieve centimeter accuracy, it

is necessary to use a Differential GNSS sensor (DGNSS) [7]. DGNSS systems further

develop the signal from satellites by using of a network of ground-based reference

stations, which enable the broadcasting of differential information to the user to

improve the accuracy of the position.

2.2.1 EOV

In Hungary, it is possible to describe GNSS coordinates using the EOV [8] pro-

jection system (EOV is the abbreviation of Egységes Országos Vetület, meaning

Uniform National Projection). The EOV is the projection system of surveying maps

in Hungary and was introduced in 1975. The whole territory of the country is covered

by a cylindrical projection. The orientation of the coordinate axes is NE, that is,

the direction of the positive X points to the north, and the direction of the positive

Y points to the east. To simplify the calculations, the coordinate axes were shifted

parallel to each other by 200,000 meters in the X direction and 650,000 meters in

the Y direction so that the entire area of the country fell into the first coordinate

quarter. The value of the X coordinate is always less than 400,000 m and the Y
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2. Background and related work

coordinate is always greater than 400,000 m to provide protection against possible

exchange of coordinates.

2.2.2 Kalman filter

One of the biggest problems with using a GNSS sensor is that the sensor might

lose signal and we will miss multiple coordinates. A popular solution to minimize

the error of various sensor signals is to use the Kalman filter.

The filter is named after Rudolf E. Kálmán, who was one of the primary develop-

ers of the method [9]. The essence of the algorithm is that it is capable of optimally

estimating a series of measurements from a moving noisy system. This method pro-

vides much more accurate information about the object being investigated than if

only one measurement was made. It has many applications and is commonly used

in navigation and guidance.

The algorithm works in a two-step process:

Prediction : Calculation (estimation) of the current state variables, together with

the uncertainties.

Update : Recursively using the previously calculated state and the current mea-

surements with a weighted average, to achieve better results.

The Kalman filter has to decide which state to rely on, predicted state or mea-

sured state. This will be decided based on the process and measurement error. For

better understanding, the two states can be represented as two Gaussian signal. As

shown on Fig. 2.7 the predicted state has a wider curve, so it contains more uncer-

tainty than the original measurement. The Kalman filter takes this uncertainty into

account and shifts the resultant signal towards relatively more certain signal.
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2. Background and related work

Figure 2.7: Optimal estimation

Source: medium.com

Theoretically, the basic assumption of the Kalman filter is that the system under

investigation is a linear dynamic system and that all error functions and measure-

ments have a normal distribution.

In order to use the Kalman filter to estimate the internal state of a process,

it must be modeled within the Kalman filter framework. The model is represented

formally in Eq. 2.1.

xk = Fkxk−1 + Bkuk + wk (2.1)

where

• Fk :The state transition model applied to the previous state xk−1.

• Bk: The control-input model which is applied to the control vector uk.

• wk: Process noise which is assumed to be extracted from the zero mean mul-

tivariate normal distribution N , with covariance, Qk: wk ∼ N (0,Qk).

As it seen, the state at time k is calculated from the state at k − 1.
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2. Background and related work

The other important element of the model is the value of real measurement at

the time k, represented as:

zk = Hkxk + vk (2.2)

where

• Hk: The observation model that maps the real state space to the observed one.

• vk: The observation noise which is assumed to be zero mean Gaussian white

noise with covariance Rk: vk ∼ N (0,Rk).

uk and vk are mutually independent.

The error equations are:

• x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk

• Pk|k−1 = FkPk−1|k−1F
T
k + Qk

where k | k − 1 means estimating k based on k− 1. The first is the vector error,

and the second one the error covariance matrix. With this two equations we can

predict the accuracy the method and can use the difference to update. A summary

of the process can be found on Fig. 2.8.

Figure 2.8: Basic concept of Kalman filter. Source: Wikipedia
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There are many extensions and generalizations to the Kalman filter, such as the

Extended Kalman filter, which is the non-linear version of the filter and it is widely

used for the position estimation in GNSS receivers.

In the case of Extended Kalman filter state transition and observation models do

not have to be linear functions of state, but rather can be differentiable functions:

xk = f(xk−1,uk) + wk

zk = h(xk) + vk

(2.3)

There have been also attempts to further improve the filter. Julier and Uhlmann

introduced a new approach, called Unscented Kalman Filter [10]. In this paper, a

new linear estimate is produced that provides performance equivalent to the Kalman

filter for linear systems, yet is generalises into nonlinear systems without the lin-

earization steps required by the EKF. The fundamental component of this filter

is the unscented transformation which uses a set of appropriately chosen weighted

points to parameterize the means and covariances of probability distributions.

Petovello et al. also tried to improve the filter with a new approach of the imple-

mentation [11]. The algorithm differs from previous implementations in that it does

not suffer from numerical problems and does not contain inherent time latency or re-

quire reinterpretation of Kalman filter parameters. Their tests showed that the new

method contains more realistic, thus more useful covariance and error information.

2.3 Sensor fusion

While a LiDAR sensor can provide a rich, real-time 3D map, but the origo of the

map is always be the sensor, so it only provides static data collection. By moving the

device, the collected data will be uninterpretable. The idea is to combine the output

of different sensors to calculate the position of the current point cloud relative to

existing cloud. The most common approach to solve this issue is to use a GNSS

sensor.

During sensor fusion, the main problem is caused by the pairing of the outputs

of different sensors. One aspect of this is the timestamp synchronization, so we know

the precise time that each event occurred and can assign the different sensor signals

to each others. Differences between coordinate systems is also an issue, as is the
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already mentioned poor or missing signal of sensors in the case of GNSS. This issues

has to be solved in order to achieve good results.

The fusion of the LiDAR sensor and the a GNSS sensor output has been the

subject of several attempts in recent years. García-Moreno and Gonzalez-Barbosa

combine an HDL-64 Velodyne LiDAR sensor with an GNSS ProMark3 with RTK

technology to construct urban scenes [12]. The sensors are synchronized through

their internal clocks using the Lamport [13] algorithm, and the position of the LiDAR

acquisition is given by the GNSS data. The difference between coordinate system

was resolved by creating an appropriate rotation matrix based on Euler angles [14].

To calculate missed coordinates, the article used a weighted interpolation based on

existing GNSS coordinates and missed time, instead of Kalman filter. Their results

are encouraging, but they plan to use the SLAM algorithm to further improve them.

Trafina used real-time point cloud reconstruction and encountered a problem

with the delay on the hardware line and a variable delay with which the processor

registers the information from different sensors [15]. The problem was solved by

calculating the traffic delay and adding it to each timestamp. The author combine

the Velodyne LiDAR VL16 sensor with an 3DM- GX4-45 from Lord Microstrain IMU

sensor and an RTK (Real Time Kinematic) GNSS. The IMU sensor also included

a built-in Kalmam filter. In his tests, the direction of travel was calculated using

the IMU sensor and the translation was calculated using GNSS sensor. During the

experiments, it was a problem that many times the IMU sensor did not return the

real angle despite the built-in Kalman filter, due to the disturbing environmental

influences. This problem has only been solved manually, but an automated method

is planned for the future.

Yanbin Gao and Noureldin used GNSS and LiDAR as support systems as an

alternative to provide regular corrections of INS in different environments [16]. A

quaternary-based error model was used to merge information about the multi-sensor.

Beside the sensors an innovative hybrid scan matching algorithm also was used. For

resolve the issue of coordinate systems, an quartation-based [17] rotation matrix was

used. The authors chose this solution because of its computational efficiency and

lack of singularities. They started their experiment outdoors where the GNSS still

provided a suitable signal. Moving indoors, the role of GNSS was taken over by an
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INS sensor. Experimental results show that metric navigation accuracy and accurate

position angle estimation can be performed over the entire orbit, including outdoor

and indoor environments.

In their work, Qian et al. performed a sensor fusion in a wooded environment

[18] between LiDAR based SLAM algorithms and GNSS receiver. The crown of trees

greatly impairs GNSS accuracy by shading satellites. The use of a Kalman filter has

greatly helped to reduce the resulting errors.
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Chapter 3

Analysis and specification

3.1 Used devices

3.1.1 Velodyne LiDAR VLP-16

For my research I used the small and compact VLP-16 LiDAR sensor from

Velodyne (see: Fig. 3.1). The sensor uses a rotating head featuring 16 semicon-

ductor lasers, each firing approximately 300,0000 points per second in single return

mode and 600,0000 points per second in dual return mode, providing in real-time a

rich set of 3D point data.

Figure 3.1: Velodyne VLP-16 LiDAR sensor (Source: Velodyne)
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3. Analysis and specification

Each of the lasers has its own dedicated detector, which closes a predetermined

vertical angle to provide a 30◦ – from -15◦ to 15◦ – field of view [19].

The measurements range is close to 100m, and the range accuracy is up to ±3cm.

With all this feature together, the sensor provide a 360◦ panorama view.

3.1.2 Stonex Survey S9III Plus

To record the displacement, a high precision geodetic DGNSS, Stonex Survey

S9III Plus was used, which is a multiconstellation receiver [20]. The sensor can

be seen on Fig. 3.2. It has been designed to receive and manage GNSS signals

from Navstar GPS, Glonass, Galileo and other navigation systems. In addition to

the coordinates in the WGS 84 format, the sensor can also return the coordinates

interpreted in the EOV system.

Figure 3.2: Stonex S9III Plus sensor. Source: Stonex

The sensor achieves high accuracy (up to centimeter), but is quite sensitive to

external influences such as tall buildings or overhanging tree branches. For this

reason, in addition to the Stonex sensor, I also used the GNSS of an Android device,
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which, although not capable of such accuracy, is less sensitive to the aforementioned

effects.

3.1.3 Mobile GNSS

For mobile measurements, I used a Samsung A8 (model 2018) device with an

Exynos 7885 chipset that includes the integrated localization chip [21]. It is capable

of receiving GNSS, GLONASS, Gailelo and BeiDuo satellite signals. In terms of

accuracy, 2-4 meters is typical, which is not even close to the accuracy of the Stonex

sensor, but it is also able to receive signals in shaded areas. The coordinates were

recorded in the raw format, the mobile did not apply Kalman filter to it.

3.2 Calibration of the sensors

During the measurements, it was important to properly calibrate and align the

sensors. Since the Stonex sensor is highly sensitive for any objects covering the

receiver unit, it had to be located at the top so that the other sensors would not

block its signal. It was also important that the LiDAR sensor always looked in the

direction of travel to make the direction of the Y-axis clear – which will be important

when synchronizing coordinate systems, detailed in Sec. 3.4.1. The distance between

the individual devices also had to be fixed. I also had to provide power to LiDAR and

a computer (a laptop) to read information about it. Of course, it was also important

that the devices placed in this way could be moved easily and evenly. I have tried

several methods to achieve the following points. The sensors were located on a push

cart dolly in different ways, as shown in Fig. 3.3.

3.3 Data acquisition

Important part of the measurements was the selection of the right location of data

acquisition. As the GNSS sensors are not really suitable for indoor measurement, I

mainly performed outdoor tests.

For a stable point cloud of the LiDAR sensor, it was important to choose a

relatively even ground. The accuracy of the GNSS sensor signal is better, if the road
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3. Analysis and specification

Figure 3.3: Placement of sensors for measurement

is not surrounded by many tall buildings or trees whose canopy reach over the road.

These requirements were difficult to meet simultaneously. Most of the open spaces

have cobblestones, which results an overly noisy point cloud. The roadway, where

I could also have provided open space, would also have caused too much vibration

due to the large asphalt grains. The most suitable sites were recently built sidewalks

that provided relatively even ground. However, it was difficult not to be shaded by a

tall building or tree. The Figure 3.4 shows one of the measurement locations where

these the requirements met relatively well.

However, even in the case of relatively smooth ground, there were shifts in the

line of LiDAR measurement. A more stable foundation would be needed to achieve

more accurate results.
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3. Analysis and specification

Figure 3.4: One of the location of measurements

3.4 Methodology

The essence of my algorithm is based on combining the outputs of different GNSS

sensors and the output of the LiDAR sensor so that the point clouds provided by

the LiDAR sensor can be properly transformed. The concepts of this approach and

the synchronization of sensor results are presented below.

3.4.1 GNSS based localization

In the case of the sensor fusion, it is important that the individual dimensions

of the devices are properly coordinated.

Synchronization of time

One of the important part is that the signal given by each sensor can be matched.

For this I use the UNIX epoch time. However, obtaining the necessary information

from each sensor was not straightforward.

Each frame of the LiDAR sensor at least with the implementation library used,

does not show the exact UNIX time, but only the seconds that have elapsed since
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the sensor was turned on. However the information was known using WireShark 1.

For this reason, it was necessary to specify a start time for each measurement.

In case of the Stonex GNSS sensor, a complete discharge could the sensor clock

by several hours or even days off, so it had to be recalibrated before any measurement

could take place.

Synchronization of coordinate systems

Another important aspect is that the translations and rotations in the coordinate

system of each sensor can be matched to each other.

The coordinate system of the GNSS sensors is obviously determined by the ap-

plied geodetic datum. Basically all devices can provide the position according to the

World Geodetic System (WGS84, also known as EPSG:43262), and more advanced

tools can produce the position in a custom coordinate reference system, like EOV

introduced in Sec. 2.2.1. These are fixed for each measurement.

E

N

y

x

y

x

y

x

Figure 3.5: The GNSS (black) and LiDAR (blue) coordinate system relative to

each other

In the case of LiDAR, the axes are always determined by the location of the

sensor, so the Y axis always faces ahead. The relationship between the two coordinate

systems is shown on Fig. 3.5. Since the translation and rotations are measured in the
1https://www.wireshark.org
2https://spatialreference.org/ref/epsg/4326/
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GNSS coordinate system, it has become necessary to apply a rotation between the

two coordinate systems, so that the calculated values could be transformed. There

are several approaches to achieve this, for example Euler angles or quaternion based

rotation matrix. In this work I used the Euler angles based approach.

To properly determine the direction during the measurements I assumed that the

front of the LiDAR always looked in the direction of travel, and that the progress

was straight for the first few meters.

The appropriate transformation of the point cloud based on the values calculated

using GNSS coordinates is detailed in Sec. 3.4.3.

Figure 3.6: Noisy points at the beginning of the measurement

When defining transformations, it was a problem that at the beginning of the

measurement, when the GNSS sensor is stationary or there is not much displacement,

the distance between the recorded points is small (in the order of millimeters), but

their standard deviation is relatively large. The problem is presented on Fig. 3.6.

Because of this, these points had to be skipped (even if some of them might already

belong to one of the initial LiDAR frames),and the first coordinate is selected by

the fact, that the translation between this one and the following one be at least 0.09

meters.

Of course, not only the direction of the coordinate systems, but also their type

differed for the GNSS and LiDAR sensor. The GNSS represents the latitude and

longitude coordinates in a Geographic coordinate system, while the LiDAR sensor
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(a) Geographical coordinate system.

Source: IBM

(b) Cartesian coordinate system.

Source: study.com

Figure 3.7: The different coordinate systems

system is based on the traditional Cartesian coordinate system (shown in Fig. 3.7).

This problem was solved by calculating the translation and rotation between the

coordinates with the appropriate formulas, as described in the Sec. 3.4.1.

Note. This is not a problem for EOV coordinates, as it also uses the Cartesian

coordinate system.

Preprocessing the coordinates

The coordinates provided by the mobile and GNSS sensors were processed sepa-

rately, but using the same methods. In both cases, the coordinates were preprocessed

with Kalman filter, based on thesis [22], where the author used Kalman filter for

mobile GNSS sensor and described a good parametrization of the filter.

In my thesis, the Kalman filter has also been used mainly to correct the more

inaccurate signal of the mobile GNSS sensor and to fill missing coordinates due to

the sensitivity of the Stonex sensor.

With the help of this, it is ensured that even if a measurement is missed, a

coordinate will fall every second during the measurement.

Fig. 3.8 (a) shows that the scattered coordinates of the mobile GNSS sensor

have become more uniform due to the filter. Figure (b) shows that although the

measurement was missing for several meters, the omitted sections could be bridged
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3. Analysis and specification

(a) Coordinates corrected by

Kalman filter

(b) Coordinates completed by

Kalman filter

Figure 3.8: GNSS coordinates corrected and completed by Kalman filter

with the help of the filter. For both figure, the original path is shown in yellow and

the path given by the filter is shown in red.

The Kalman filter was only run after leaving the previously mentioned initial

noisy coordinates, thus achieving more accurate results. With the corrected coor-

dinates and the properly synchronized dimensions, everything is given to calculate

the changes between the individual coordinates.

Matching LiDAR frames and coordinates

As mentioned earlier, I used UNIX epoch time to match each frames and coor-

dinates. The essence of the algorithm is to find for each frame the coordinate that

is closest to it in time. To do this, it is necessary to define a function that assigns

to each frame the right coordinate.

Let F = (f1, f2, ..., fn) be the sequence of LiDAR frames. Let C = (c1, c2, ..., cm)

be the sequence of measured GNSS coordinates.

Let’s define the

match : DF → DC
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partial function, which finds the appropriate GNSS measurement for all LiDAR

frames, as described above. Formally:

match(i) =



cj if ∃j ∈ DC : cj.time ≤ fi.time ∧ cj+1.time > fi.time∧

|cj.time− fi.time| ≤ |cj+1.time− fi.time|

cj+1 if ∃j ∈ DC : cj.time ≤ fi.time ∧ cj+1.time > fi.time∧

|cj.time− fi.time| > |cj+1.time− fi.time|

⊥ if 6 ∃j ∈ DC : cj.time ≤ fi.time ∧ cj+1.time > fi.time

(3.1)

As we can see, if we do not find a coordinate whose time would be exactly the

same as the time of the examined frame, then the function takes the two coordinates

whose time is even smaller and already bigger as the examined moment. Of the two

coordinates, the one with the smaller time difference is selected.

Calculation of the transformations

Once we have obtained which frame is paired with which coordinate, the next

step is to determine what changes have taken place since the previous pair. In the

case of mobile GNSS, this can only be determined from the coordinates in the WGS

84 format, while in the case of the Stonex sensor, we can choose to also the EOV

coordinates instead.

In the case of geographic coordinate system, the translation in meters between two

coordinates can be calculated using the help of the Haversine formula [23], which

determines the great-circle distance between two points on a sphere. Formally:

d = 2R arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
λ2 − λ1

2

))
(3.2)

where R is the radius of the Earth, ϕ is the latitude, and λ is the longitude coordi-

nates.

In order to be able to determine the displacement separately horizontally and

vertically, I use the trick to fix the latitude coordinates in the former case and the

longitude coordinates in the latter case to the coordinates of the first point.

28



3. Analysis and specification

∆x = 2R arcsin

(√
sin2(0) + 2 cos(ϕ1) sin2

(
λ2 − λ1

2

))

∆y = 2R arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin2(0)

) (3.3)

In the case of EOV coordinates, it is not necessary to use the haversine for-

mula. In this case, the displacements can be calculated simply by subtracting the

corresponding coordinate pairs from each other:

∆x = x2 − x1

∆y = y2 − y1

(3.4)

To apply the offsets correctly to the axes, we need to calculate the rotation angle

between the two coordinate. This is done by calculate the angle between the starting

coordinate y axis and the line connecting the start and the destination coordinate.

The angle of rotation between two coordinates is determined in radians using the

formula below:

φ =



π
2

if ∆x > 0 ∧∆y = 0

−π
2

if ∆x < 0 ∧∆y = 0

π − arctan(∆x
∆y

) if ∆x <> 0 ∧∆y <> 0

0 if ∆x = 0 ∧∆y > 0

π if ∆x = 0 ∧∆y < 0

⊥ otherwise

(3.5)

When calculating the angle, it is important to keep in mind the fact that the

LiDAR frames always look ahead in the direction of travel. Therefore, by applying

the above formula in each case, we can obtain how much the given frame needs to

be rotated in order for it to face in the correct direction in the GNSS coordinate

system. The required angle is shown in Fig. 3.9.

If the distance did not increase between the latitudes, then we went either straight

to the East or West, therefore it is necessary to rotate the given frame by π
2
(±90◦)

from its original position. If the distance has not increased between the longitudes,

we have either moved towards the North, in which case no rotation is required, or we
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E

N

φ

Figure 3.9: The angle of rotation

have taken the direction to the south, for which the current frame must be rotated

by π (180◦). If there is a change in both directions, we need the angle between the

line connecting the two coordinates and the vertical axis of the first coordinate,

which is provided by the formula π − arctan(∆x
∆y

).

So far only the transformations for the x, y axis were defined, however, the

elevation can also change during the measurements. As a result, it is necessary to

calculate the translation on the z axis and also the angle of elevation. Each elevation

is transmitted to us in meters by GNSS sensors, so calculating the difference is a

simple subtraction:

∆z = τ1 − τ2 (3.6)

where τ means the elevation.

However, it is not enough to simply calculate the elevation differences, as the

LiDAR sensor also tilts horizontally as a result of driving on a slope. The angle of
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the elevation is calculated as shown in Eq. 3.7.

β =



π
2

if ∆z > 0 ∧ d = 0

−π
2

if ∆z < 0 ∧ d = 0

arctan(∆z
d

) if ∆z <> 0 ∧ d <> 0

0 if ∆z = 0 ∧ d <> 0

⊥ otherwise

(3.7)

3.4.2 Fusion of results

For efficient and automated coordination of the two GNSS source, I needed a

unified scale to decide which method has better accuracy to the given frame. For

this, I used a simple percentage result, where 100% means that the method is likely

to give a near-perfect result, while the lowest percentage means greater uncertainty.

Determining accuracy for GNSS

For Stonex and mobile GNSS, we have different information on how close the

measured point can be to reality.

In the case of the Stonex sensor, each coordinate pair has a so-called dilution of

precision (DOP) value [24]. This is a term used in satellite navigation to define error

propagation as the mathematical effect of satellite navigation geometry on position

measurement accuracy. Basically, the more satellites the GNSS receiver can see,

the more accurate the result can be. However, the distance between the satellites

matters. If they are too close to each other, the DOP value will be poor. The ideal

arrangement (of the minimum four satellites) is one satellite directly overhead, three

others equally spaced near the horizon. The signal provided in case of poor and good

positioning of the satellites is shown in Fig. 3.10.

The DOP value scale is starting from 1. The lower the value, the greater the

accuracy of the measurement. The approximate meaning of the different DOP values

is given in Table 3.1.

Various type of DOP values can be used, depending on the location of the satel-

lites:

• HDOP – horizontal dilution of precision
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Figure 3.10: The alignment of the satellites, causing poor (a) and good (b) DOP

Source: gisgeography.com

• VDOP – vertical dilution of precision

• PDOP – position (3D) dilution of precision

• TDOP – time dilution of precision

• GDOP – geometric dilution of precision

However, the DOP value is only a multiplier. If we want to determine the accu-

racy in meters, we need to know how accurate our GNSS sensor is. If it’s accuracy

is e.g. 0.5 meters and the DOP value is 2.5, then the accuracy of the measurement

is about 1.25 meters.

In the case of mobile GNSS the sensor does not return a DOP value, it only

has an accuracy specified in meters. Therefore, I also had to determine the accuracy

provided by Stonex in meters. Since the sensor can also achieve centimeter accu-

racy, I used 0.5 meters as an upper estimate. Multiplying the PDOP value for each

coordinate by this, I was able to use the same scale for both sensors. The value

of 0.5 meter means 100% accuracy and a value of 11 meter means 0%, since the

measurement can no longer be used. Values between the two are based on a linear

distribution.

In the event that coordinates are missed, and they are only calculated by the

Kalman filter, the accuracy is determined by subtracting the amount of time since

the last actual measurement.
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DOP

value

Rating Description

1 Ideal Highest possible confidence level to be used for applications

demanding the highest possible precision at all times.

1-2 Excellent At this confidence level, positional measurements are consid-

ered accurate enough to meet all but the most sensitive ap-

plications.

2-5 Good Represents a level that marks the minimum appropriate for

making accurate decisions. Positional measurements could be

used to make reliable in-route navigation suggestions to the

user.

5-10 Moderate Positional measurements could be used for calculations, but

the fix quality could still be improved. A more open view of

the sky is recommended.

10-20 Fair Represents a low confidence level. Positional measurements

should be discarded or used only to indicate a very rough

estimate of the current location.

>20 Poor At this level, measurements are inaccurate by as much as 300

meters with a 6-meter accurate device (50 DOP x 6 meters)

and should be discarded.

Table 3.1: Meaning of DOP values. Source: Wikipedia)

3.4.3 Proper transformation of the point cloud

Now that we know the translation and rotations calculated by each sensor and

their accuracy, the next step is to apply the transformations correctly in the point

cloud.

Since we always only know the delta from the previous point, we have to record

the total translation and rotation, to which the newly calculated results are added.

The current total translation and rotation will be applied to the current point

cloud, as they are obtained raw from the LiDAR sensor without the use of the

previous transformations. This is accomplished with an affine transformation matrix
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[25]. In linear algebra, linear transformations can be represented by matrices. If T is

a linear transformation mapping Rn to Rm and ~x is a column vector with n entries,

then T (~x) = A~x for some m× n matrix, A called the transformation matrix of T .

To represent affine transformations with matrices, we can use homogeneous co-

ordinates. This means representing a 3-vector (x, y, z) as a 4-vector (x, y, z, 1),

and similarly for higher dimensions. All conventional linear transformations (such

as translation and rotation) can be described as an affine transformation and thus

represented as general transformation matrix. Each transform can be combined by

multiplying the transformation matrices that describe them.

In our case, the transformation matrix applied to the point cloud can be described

in the following form:

A =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1




1 0 0 0

0 cos β − sin β 0

0 sinβ cos β 0

0 0 0 1




cosφ − sinφ 0 0

sinφ cosφ 0 0

0 0 1 0

0 0 0 1

 (3.8)

The first matrix is describing translation: tx is the total translation along the

x axis, ty is the total translation along the y axis and tz is the total translation

along the z axis. The second matrix is the rotation matrix around x axis, described

by Euler angles based on β, the elevation angle calculated in the previous section.

Similarly, the third matrix is the rotation matrix that describes the rotation about

the z axis based on φ.

3.4.4 Generation of output

The final part of the algorithm after the proper application of the computed

transformations to concatenate the modified frames into a large common point cloud.

The problem with concatenating frames is that if each point cloud is concatenated

one at a time, the resulting point cloud will contain too many points, making the

actual image indelible and the run time of the algorithm too long. I used two methods

to solve the problem:

On the one hand, since the LiDAR sensor produces several frames per second –

which in the case of GNSS, will fall on the same coordinate, thus using the same
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transformation – and they do not contain very different information, only one frame

will be used for the given second.

On the other hand, it was necessary to decide which of the newly arriving points

are those that were not yet included in the concatenated point cloud at all or were not

yet in sufficient numbers. Only these points need to be used, the rest are disposable.

To decide this, it was necessary to build a structure in which the individual points

and their neighbors could be stored in order to be able to decide which points have

a high density and which have low. Important aspect was that the structure could

be indexed and searched easily and quickly.

My first approach was to use the k-d tree structure [26]. It is a binary search tree

where data in each node is a k-dimensional point in space. It allows to easily perform

searches such as nearest neighbor search[27] or radius neighbor search [28], which can

be used to solve the above-mentioned problem. The problem with the structure was

that updating the tree due to the balancing problem is extremely costly, thereby

drastically increasing the runtime of the algorithm.

For this reason, I decided to use the octree [26] data structure as second approach,

which is also a tree structure, where each internal node has exactly eight children. In

this – although less efficient way – the above-mentioned searches can be performed

as well, and updating the tree is less expensive, giving significantly better runtime

overall.

The tree will be built as soon as the first frame arrives and the necessary points

will be inserted into the tree when the next frames arrive. Currently, a point is

inserted only if there are less than 500 neighbors in the constructed tree within a

specified radius. This is determined using the radius neighbor search algorithm. The

difference between point clouds containing all points and only significant points is

clearly shown in Fig. 3.11.
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(a) The point cloud without octree

(b) The point cloud with octree

Figure 3.11: The difference resulting from the use of octree

36



Chapter 4

Implementation

4.1 Architecture

The essence of the method is that the information provided by the various sensors

can be used properly to achieve the best possible result, in a fully automated way.

To achieve this, it was necessary to create a well customizable architecture.

The framework of the program follows a standard producer-consumer architec-

ture, in the form of a piping structure. The process begins with a producer, that

reads each frame of LiDAR and transmits it to a consumer, trough a processing

section. The processing part consists of independent processors. Each of them re-

ceives a point cloud and returns a point cloud, modified in some way. Each part

of the pipe receives the point cloud modified by the processor before it, making

its own modifications and then passes it on to the one following one. The relative

order of the processors is freely changeable in the light of the desired result. We can

also easily add new processors or take away existing ones, or make their participa-

tion conditional. The units can perform filtering tasks (to filter out certain points),

transformation tasks (to determine the relative position of each frame) and also can

be responsible for concatenation. At the end of the pipe are located (even several)

consumer, that display the point cloud modified by the processing part, either in

the form of visual or a file. Fig. 4.1 shows the model of the imagined architecture.
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Figure 4.1: The workflow of the architecture

4.2 Implementation in C++

The architecture was implemented in C++ and the PCL library was used to

process the point clouds.3.

PCL supports several types of point cloud, depending on the properties of the

point we want to use beside the X, Y, Z coordinates (such as intensity). Although my

testing was performed using the PointXYZI type, I tried to have as much flexibility

and reusability as possible during the design, so the classes performing point cloud

operations were designed with the help of templates, where the template parameter

is the type of the point cloud.

The program starts with a preprocessing phase where the GNSS coordinates are

read from CSV file and the Kalman filter is applied to them. The starting rotation

angle - which will form the basis for later calculations - will be also calculated.

For the producers, I have defined a Producer base class, which contains a start

and stop function, with the help of which the reading of point clouds can be started

or stopped. The class also includes the onNewCloud() function that notifies the

arrival of a new point cloud and the registerHandler() function that assigns an
3https://pointclouds.org/documentation/
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external function to handle the arrived frame.

From the Producer class inherits the GrabberProducer class, which is currently

responsible for reading frames from .pcap files, or directly from the LiDAR sensor.

This is done with the help of an instance of the PCL built-in Grabber class.

The processing part is based on the Processor class. The class has a virtual

process() function, which is expect a constant reference to a point cloud as input

parameter, and returns an reference to the modified point cloud. Both the filters and

the various transformers are derived from the Processor class, each implementing

the process() function according to its own purpose.

The algorithm currently includes an OrigoFilter, a CloudTransformer and a

MergeTransformer class.

The job of the OrigoFilter is to filter out the very close points, thus the people

pushing the structure, so that their silhouette does not disturb the final result. This

is done using the CropBox class in the pcl library, which removes points within a

specified area.

The filtered point cloud is received by the MergeTransformer that currently

includes 2 calculators: one instance from GPSCalculator for mobil GNSS and one

for Stonex sensor. Each calculator implements the Calculator base class and its

virtual calculate() function. They use the same methods, but difference source

to determine the direction and amount of translation on each axis since the last

Frame, together with the rotation and elevation angle. Each calculator also calculates

a certainty, how good is the given result. As mentioned above, this certainty is

expressed as percentages. The data calculated in this way is returned using the

TransformData structure.

As mentioned earlier, the GPSCalculator class use GNSS coordinates to cal-

culate the required values - one based on signals from the Stonex sensor and the

other from mobile GNSS. In the case of the Stonex senor, it can also be decided to

use the WSG 84 or EOV coordinates for the calculation. In the case of one of the

GNSS sensors does not have information, the associated calculator does not will be

applied.

The CloudTransformer examines the certainty of the calculators and applies the

transformation calculated by the best to the point cloud.
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Figure 4.2: The architecture of the system

40



4. Implementation

The point cloud, which now has the appropriate offsets and rotations, is merged

with the existing point cloud by MergeTransformer, with the help of an octree data

structure.

The filter and transformer classes are grouped together by the

ProcessorPipe class, which implements a pipe structure. The class contains

std::vector<olp::Processor<PointType>*> processors data member. A new

member can be added to the vector using the add() function of the class. By

calling the execute() function, the program iterate through the list of processors.

The loop calls the process() function to the next processor, with the output of

the process() function of the previous processor. The first processor receives the

raw point cloud received from the GrabberProducer class, which the execute()

function expects as an input parameter.

The classes that implement the Consumer class and its virtual show function

are responsible for displaying the concatenated point cloud. The ViewConsumer class

draw the point cloud on the terminal using the PCL library Viewer class. After

closing the viewer, the FileWriter class - whose base class is also the Consumer

class - can be written to the created point cloud file in LAS format. The described

operation of the system is illustrated on Fig. 4.2.

4.3 Compilation and execution

Proper installation of the program requires the installation of the PCL library

and its dependencies. It is important to note that in order for the PCL library to be

able to handle PCAP files, its source code must be recompiled with the -DWITH_PCAP

= YES flag. External dependencies belonging to the program are located in the ven-

dor folder and are added to the project as git submodules 4 . The program can

be compiled using cmake 5 after installing the appropriate dependencies. See the

repository README file for more information and platform-specific installation in-

structions.

Information required for the program to run properly, such as the path to a

.pcap file or CSV files with GNSS coordinates, can be specified as arguments. It is
4https://git-scm.com/book/en/v2/Git-Tools-Submodules
5https://https://cmake.org
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also necessary to specify the start time of the measurement in UNIX epoch time as

argument, and the filtering of nearby points can be optionally enabled in this area

too. By using the --help command, the program lists the possible arguments and

their expected format.

4.4 Code Availability

The source code of the program is an attachment of the thesis. It can also by

viewed online at the https://github.com/mcserep/olp GitHub repository.
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Chapter 5

Results

The measurements were performed with the help of the university tools and my

supervisor, in areas close to the university. Fortunately, we were able to find a couple

of locations, (such as the Tüske Hall or the BEAC sidewalk) where the measurements

made could be used for testing. The different aspects to achieve a good measurement

are explained in Sec. 3.3. The samples below examine the efficiency of the algorithm

with or without the presence of these aspects.

5.1 Measurement experiences and results

The first measurements

In our very first measurements, neither the setting of the GPS instruments nor

the ground was smooth enough to achieve proper results. In the case of the Stonex

GNSS sensor, the sensor clock was set for several days and hours, and the setting

to communicate with ground stations was missing, so the results were not accurate

enough. In the case of the LiDAR sensor, not only was the ground uneven enough,

also the sensor was located in the hand, which caused additional resonance. Because

of these, running the algorithm did not yield evaluable results.

Learning from these problems, the GNSS sensor has been properly configured

and a stable placement of the sensors was designed, which was presented in Sec. 3.2.
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Measurement near tall buildings

The next measurement - with sensors that are now properly calibrated and po-

sitioned - took place on a much more even ground, but in a location surrounded by

tall buildings, as the Ericsson House.

Since the measurement started near a tall building, which we were getting closer

and closer to during the measurement, there was no completely good signal for any

of the GNSS sensors. This was helped a lot by the use of the Kalman filter. Fig. 5.1

shows a detail of the route taken. Green shows the original points located differently

from the straight line, and red shows the improved path created by the Kalman

filter, which is almost straight.

Figure 5.1: The original route (green) corrected by Kalman filter (red)

Thanks to this I managed to get a relatively smooth route but the shifts in the

created point cloud can still be seen, as it shown on Fig. 5.2.

As both sensors completely lost their signal when approaching the building, the

route itself became relatively short, about 25 meters.
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5. Results

(a) The studied area represented on the map

(b) The created point cloud

Figure 5.2: Measurement surrounded by tall buildings
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Measurement with straight path and open area

For the next measurement, we were already looking for a location with a much

more open area. Our choice fell on the area around Tüske Hall. Here, the GNSS

signal was only disturbed by trees. As a result, the path was smooth even without

the use of the Kalman filter in the case of GNSS coordinates, but by applying it,

small oscillations were also corrected. However, in the resonance due to the uneven

ground, there are still inaccuracies in the point cloud given by the LiDAR sensor.

The Fig. 5.3 shows the map of the studied area and Fig. 5.4 the point cloud created

based on it. The traveled route – which was 34 meter in X axis and 33 meter in Y

axis – is marked in red. The created point cloud in 3D can be seen better from side

view, as shown on Fig. 5.4 (b).

Figure 5.3: The studied area represented on the map
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5. Results

(a) The created point from side view cloud

(b) The created point from top view

Figure 5.4: Measurement with a straight path and open area

Measurement with straight path and a slightly shaded area

At the same location, but on the other side of the road, where there were several

trees with large crowned covering the route, we also took a measurement. As a

result, the Stonex sensor completely lost the signal on a stretch and the mobile

GNSS deviated from the original route. Fortunately, the Kalman filter was used to
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5. Results

improve so much that the measurement still gave good results. Fig. 5.5 shows the

route given by Stonex sensor and corrected by the Kalman filter and the resulting

point cloud. In this case, our route was also longer, a total of 70 meters.

(a) The studied area represented on the map

(b) The created point cloud

Figure 5.5: Measurement with straight path and a slightly shaded area
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Measurement with shaded area and winding road

In the next measurement, we tested the algorithm in near the BEAC sport field,

where we had to turn several times during the measurement.

Figure 5.6: Measurement with shaded area and winding road

In this measurement, it has also been well tested that the Stonex sensor signal,

which is sensitive to interference factors, can be effectively supplemented with a

mobile GNSS signal, which is less accurate but less sensitive and can give good

results, especially if a Kalman filter is applied to it. The examined area is shown on

Fig. 5.6. The yellow route is the original path provided by the Stonex sensor, the red

route is the path corrected by the Kalman filter, while the pink one is the corrected

path of the mobile GNSS.
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5. Results

(a) Only mobile GNSS (b) Only Stonex GNSS

(c) Stonex + mobile GNSS

Figure 5.7: Point cloud resulting by the use of different GNSS sensors
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As shown in Fig. 5.7, when using only the Stonex sensor (a) the beginning of

the measurement, while using only the mobile, the end of the measurement is more

accurate. This can be explained by the fact that, in the case of the Stonex sensor,

due to an unexpected factor such a wider tree or a larger billboard the measurement

was missed by up to meters, mainly half of the end of the measurement. The Kalman

filter was able to fill it, but with less and less accuracy. In the case of the mobile,

although the route is not so straight, applying the Kalman filter to it gives a result

that can be used well. The original path given by the different sensors and corrected

path by the Kalman filter can be seen in Fig. 3.8 which was already shown in previous

section. Combining the two gave a better result for the whole measurement than if

the sensors had been used separately.

In this case, lowering the density of the points results in a more visible point

cloud, as shown in Fig. 5.8.

The final result shows that we moved left at the beginning of the measure-

ment, then turned right, followed by a long straight section followed by a left bend.

Although the rotations caused a minor error in the point cloud, the overall direction

of progress can be clearly seen on Fig. 5.8. The measurement from side view can

be seen on Fig. 5.9. Not only in complexity, but also in length, it was my biggest

measurement, roughly 150 meter.

As with the other measurements, the resonance due to the uneven ground

and the uncertainty of the car with sensors caused a problem in the point cloud.

Unfortunately, this problem could not be eliminated during the measurements.
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5. Results

(a) The created point cloud

(b) The traveled road in the point cloud

Figure 5.8: Point cloud with lower density
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5. Results

Figure 5.9: Studied area from side view

Measurement with elevation difference

The measurements so far have been made mainly in locations where the change in

elevation difference was negligible. For the next measurement, we selected a location

where, in addition to the continuous bending of the road, the height also changes.

The winding road near the Petőfi Bridge was perfect for this. The studied area with

the traveled route is shown on Fig. 5.10.

At the beginning of the measurement, the route was nicely visible, by the end

of the it the point cloud was a bit blurred, but the direction of progress can still be

perceived, as it shown on Fig. 5.11.

Figure 5.10: The studied area
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5. Results

(a) The beginning of the measurement

(b) The end of the measurement with the traveled path

Figure 5.11: Different stages of measurement

Although it is difficult to recognize objects, the difference in elevation - which

was 3 meter - between the beginning and the end of the measurement is clearly seen

on Fig. 5.12.
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(a) The beginning of the measurement

(b) The end of the measurement

Figure 5.12: Elevation difference during the measurement

5.2 Processing parameters

The algorithm was tested with 16 GB RAM and a 256 GB SSD under macOs

Catalina operating system, on a Macbook from the year 2016.

The point cloud was read from pcap files, while the GNSS coordinates were read

from csv files. The created point cloud was saved in LAS format.

Although obviously the number of frames affects the runtime, the number of

points in each frame and to be inserted is also important, as the runtime is mainly

increased by operations with octree.

The running time for each measurement is shown in Table 5.1.
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Measurement Number of frames Run time

Measurement near tall building 1070 5 min

Measurement with a straight path and open

area

1410 6 min

Measurement with straight path and a

slightly shaded area

2800 8 min

Measurement with shaded area and winding

road

3027 13 min

Measurement with elevation difference 2737 11 min

Table 5.1: Processing time of measurements
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Chapter 6

Conclusion

The aim of my thesis was to develop a framework that can efficiently and fully

automatically combine the signals of several sensors and the help of appropriate

algorithms can properly position the point cloud created by LiDAR.

A producer-consumer architecture has been developed, that can efficiently and

dynamically combine individual producers, consumers and processing units, whether

it is a filter or a transformation class.

To test the algorithm, a Stonex GNSS and a mobile GNSS sensor were combined

with a Velodyne LiDAR sensor. The advantages and disadvantages of GNSS sensors

were analyzed, and using them, an accuracy system was identified that the algorithm

can use to decide between the sensors. An extended Kalman filter was used to

improve the signal of the sensors.

Different measurements were made, which tested the created process along dif-

ferent parameters. During the measurements, I always encountered new difficulties,

such as improper calibration of the sensors or factors interfering with the GNSS

signal.

The thesis managed overcome most of the difficulties, and achieve good results.

However, the resonance resulting from the uncertainty of the push cart dolly and

the uneven ground was a problem in all measurements, causing errors in each point

cloud.
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6.1 Future work

To improve the accuracy of the algorithm, it would definitely be necessary to

develop a more stable base for the sensors. It is also planned to use a smaller,

easier-to-place device, such as a Rasberry Pi, instead of the laptop during the mea-

surements.

Involving additional sensors, such as an IMU sensor, could also further improve

the accuracy of the fusion and make it usable also indoors.

Another popular solution to the problem introduced in this thesis is the use of

SLAM algorithms, which give good results mainly indoors. Due to this, the two

methods are well combined. The combination of the sensor fusion algorithm with a

solution based on SLAM algorithms is currently in progress. Thanks to the easy-

to-expand architecture and the percentage-based accuracy estimation, integration is

easy to implement. The only problematic point at present is the coordination of the

created transformation matrices.
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