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Chapter 1

Introduction

With the continuous improvement in remote sensing technology and IT possibilities,

nowadays the available solutions aiming at the observation of our environment play a

greater role in our everyday life than ever.

LiDAR (Light Detection And Ranging) is an emerging remote sensing technology

which uses active sensors based on laser pulses to generate a three-dimensional model of

the surveyed area. It is widely used on several scientific fields from terrain modeling, to in-

door mapping, to meteorology and recently for autonomous driving purposes. Moreover,

its airborne variant makes it possible to cost-efficiently scan larger surface areas with

high resolution even at regular intervals, which provides an alternative data source for au-

tomated analyses about the surface and its changes. The results can be directly applied in

various fields related to GIS challenges, e.g. in case of land use inspections, urban plan-

ning, civil engineering, monitoring of environmental disasters (extent of flood and wa-

terlogging, earthquake damages), afforestation and maintaining GIS databases. However,

the data volume acquired from the laser scans requires efficient processing or even the

support of distributed computations.

The goal of this research was to create a novel, robust approach for contour-based

building recognition and change detection from airborne LiDAR data. The proposed al-

gorithm favorable computer resource (especially memory and storage space) requirements

compared to other studies through reducing the number of required input data sets. To cre-

ate a general solution which not only recognizes ideal, closed contours, but which is also

capable of working with different contour fragments, a series of in-depth contour analysis

and transformation steps should be integrated into the method preparing a reliable and
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1. Introduction

accurate contour classification phase. When comparing epochs of multitemporal data sets

to detect changes regarding the buildings of the scene, a potential and promising approach

could be built upon the possible contour pairings of the identified buildings with special

emphasis on the possibility to reconstruct lack or loss of information from the previous

steps.

In this study, a method fitting these goals and expectations will be presented in detail.

The technological background and an assessment for the results of related articles will be

summarized by Chapter 2. After that, I will present in Chapter 3 the contour-based build-

ing recognition method and the change detection algorithm. Chapter 4 provides some de-

tails of the implementation focusing on the operation-based design of the solution. Finally,

Chapter 5 shows the performance and validation results for the method followed by the

discussion of notable challenges regarding the research methodology.
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Chapter 2

Background of the study

2.1 General information

2.1.1 Areas of application

Change detection is the process of comparing multitemporal data and drawing con-

clusions from them. This can be performed in various ways, but fully automated methods

have the greatest value and potential. The data to be examined could be scans of the land

surface acquired by remote sensing techniques. In this case, several areas of application

can benefit from the results, e.g. supervising permits for land use, monitoring changes in

natural disaster management (flood level, earthquake damage, etc.), biomass estimation

and afforestation monitoring in forestry and maintaining GIS databases of urban areas.

2.1.2 LiDAR technology

The methods for change detection have evolved much in the last decades. This is re-

lated to the improvements of the LiDAR (Light Detection And Ranging) systems. LiDAR

is a remote sensing technique, which uses laser pulses to measure distances to a target be-

ing surveyed. This distance is determined based on the elapsed time between the emission

of the original pulse and the perception of the reflected one. The technology even allows

detecting multiple returns of the same pulse, which most frequently occurs when survey-

ing areas of vegetation as it is shown in Figure 2.1. Laser beams have a shape of a cone

(not a line), therefore multiple return in case of vegetation also occurs because the cone

can hit the tree (and its leaves) at different heights. Based on the position of the scanner
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2. Background of the study

and the angle corresponding to each emitted pulse, a three-dimensional point cloud can

be constructed, which represents the target surface.

Figure 2.1: Demonstration of multiple return in LiDAR technology. (Source: [1])

The main advantages associated with LiDAR technology are the high spatial accuracy,

the fast delivery of data (so the cost-effectiveness) and the quality being less dependent

on optically unfavorable weather conditions. These characteristics make LiDAR system

a more suitable choice for data acquisition than using the traditional satellite and aerial

images. It is also important to mention, that even if the scanner position is fixed, repeated

scans will not result in the same point cloud, there are no guarantees for fixed points.

Considering different standpoints and hence the possible occlusion effects as well as dif-

ferent incidence angles, it is even more difficult to deal with the false changes coming

from the varying point density and quality.

2.2 Data acquisition

Considering the platform equipped with a LiDAR sensor, terrestrial, mobile and air-

borne types can be distinguished. The application types require different specifications
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2. Background of the study

for the device.

2.2.1 Terrestrial scanning

Terrestrial LiDAR means a stationary device being able to create a 3D model of the

scene from the fixed location of the scanner. It is often used in conventional topography

application, in geomorphology and for deformation analysis.

2.2.2 Mobile scanning

In this case, the scanners are attached to a moving vehicle. Autonomous driving is

an emerging use case for this technology. It scans the surroundings (facades, cars, power

lines, etc.) along the way, but only from one direction, therefore the entire 3D model of

the object will not be available.

2.2.3 Airborne LiDAR

A LiDAR system can be located on an aircraft (e.g. drone, helicopter, plane) as well,

depending on the expectations for the flight altitude, the extent of the area covered and

point density of the data acquired.

It has to be acknowledged that aerial LiDAR scans in cities with skyscrapers are suf-

fering from shadowing effects. However, the point cloud will contain the building roof

points even though the walls are occluded, therefore identifying changes in the scene

should be possible. The alternatives have their limitations too (multiple scan registration,

high viewing angles, etc.) so airborne LiDAR seems to be the best option in urban envi-

ronments for building recognition.

2.3 Data formats

2.3.1 Point cloud

Considering the operating principles of LiDAR it is natural to think of the data as a set

of spatial points (eventually with additional information, e.g. intensity) corresponding to

the emitted laser pulses. There are file formats following this logic, which are supported
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2. Background of the study

by the common geographic information system softwares. Evidently, LAS files have an

exact specification [2], containing various header information beside the point data. The

compressed version of it is called LAZ. Either way, the file size can easily reach giga-

byte scale [3] which makes it difficult to keep all data in the memory of an average PC

for processing. Besides, the points in the file do not have any topology or connectivity

information, only point-wise data (e.g. coordinates, intensity), so identifying neighboring

points poses a challenge too.

2.3.2 Grid

If the individual points are interpolated on a regular grid the data is in DEM (Digital

Elevation Model) format. This can be treated as a raster image, where the grid values

denote height information. DEM is the general name, but depending on the real world

scene represented by the data there are other notions. A DSM (Digital Surface Model)

means the actual surface, including the terrain and every other object on it, as shown in

Figure 2.2. However, a DTM (Digital Terrain Model) only contains the ground points,

which either leads to "holes" (so called nodata points) in the grid or uses interpolated

values. Finally, a nDSM (normalized DSM) is simply the difference between the previous

elevation models, which can be interpreted as above-surface objects.

Figure 2.2: The difference between DSM and DTM.
(Source: Wikimedia Commons, https://commons.wikimedia.org)
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2. Background of the study

2.4 Data set

As the data set for this study, the Current Dutch Elevation (Actueel Hoogtebestand

Nederland, AHN) was chosen, which contains detailed altitude data for the whole

Netherlands both in point cloud and grid format. The project is in its third iteration

(AHN-3 [4]) since 2014 which is expected to finish in 2019. The previous acquisitions

were performed between 2007 and 2012 (AHN-2 [5]) as well as between 1996 and 2003

(AHN-1).

When working with any kind of data, one should be aware of the reliability of the

input and computed values. The accuracy of a point cloud means the difference between

the measured coordinates of a point and its actual position. These are present in the data

set both in the form of individual measurement (random) errors and systematic errors

(the latter caused by e.g. the merge process of the scan swaths into a common coordinate

system). After comparing point clouds, the uncertain changes fall into the range of the

sum of the separate accuracy error values.

The systematic error is guaranteed to be no more than 5cm for all of the three time

intervals. The random error is at most 15cm (except for the AHN-1 which has 45cm)

and it is even less in the DEM format because of the interpolation [6]. The point density

increased from 0.06-1 point / m2 to 6-10 point / m2, respectively. Both the point accuracy

and density suggest that the AHN-2 and AHN-3 data should be compared to be able to

identify changes in building scale.

2.5 Related work

When performing the change detection task, it is reasonable to incorporate a building

recognition step in the process. This decision can be confirmed by multiple aspects.

• Buildings have mostly geometrical shapes, therefore the possible changes can be

constrained (e.g. new floors and wings can be built, but a building hardly ever shows

pointwise changes).

• These systematic changes mean that all sampled points from a building (part)

should change in the same way, and this kind of redundancy in the data enables

to eliminate individual erroneous differences.
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2. Background of the study

• The building recognition procedure can also improve the overall performance be-

cause only a subset of the data has to be analyzed at a time.

The application of the building recognition step can be done either before or after pro-

ducing the change set of the two scans. The chosen approach can depend on the nature and

variety of the original data, the methods planned for the study or expectations regarding

performance.

After reading the related studies described later, the following distinction seemed ap-

propriate. First, I will present multiple existing methods for building recognition in 2.5.1.

Most of them use DEM-like data as their input, but there are point cloud based solutions

too. After that, publications related to change detection will be shown in 2.5.2.

The referred articles will be discussed in a way that evaluates each of them based on

its potential to be able to contribute to this study after being adapted to our specific use

case if necessary.

2.5.1 Building recognition

DEM-based approach

Researchers quickly recognized the possibilities arising from the use of LiDAR.

Already in 1995 an article was published aiming at automatic building recognition [7].

The authors even took one step further, namely using different models for building recon-

struction based on geometric constraints and domain knowledge (but this capability does

not really provide additional value for this study).

The approach starts with a preprocessing phase to generate the DEM from the mea-

sured 3D points of the surface. As the AHN data are already available both in LAZ and in

DSM format, there is no need for such a procedure in our method. Moreover, an approx-

imation of the surface without buildings and other above-ground objects can be avoided

as well because DTM data are also available.

Starting from this point, the difference data set of the DTM and DSM is computed,

which consists of all the above-ground elements. After that, the differences are filtered

with a threshold value adjusted to the expected building dimensions. In order to manage

buildings individually a segmentation step is carried out, which results in connected com-

ponents. Based on an experimental value the small segments get excluded. Furthermore,
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2. Background of the study

segment with a bounding box not completely contained in the data set are rejected too. In

order to determine the buildings more accurately, the former global thresholding is refined

by deriving a local threshold value based on the height information in the bounding box

of each segment.

The presented method only uses size and height information when marking a segment

as valid, consequently, false changes can be found where trees are located too close to a

building (or even partially cover its roof). As a possible solution for this problem, intensity

and color information could be taken into account.

Weidner addressed this issue in a later publication as well [8] by proposing a method

which still relies solely on height information. The vegetation areas are associated with

differential geometric quantities, e.g. the variance of surface normals derived from the

neighboring height data from the DSM. After a refinement process, the vegetation areas

are also given in the form of segments, which are excluded from the existing segments

of the buildings. The paper mentions other differential geometric properties (roughness,

gradients and curvatures), but their role and usefulness were not detailed enough in the

study, so this topic should be further investigated for appropriate evaluation.

The basic idea to work with the difference data set of the DSM and DTM (with the

so-called normalized DSM, nDSM) appears in [9] as well. Although the generation of an

approximated DTM is a separate step in the study, the possibility of inaccurate surface

feature detection is worth considering in every other application too. In this particular

case, the cause of this phenomenon is the distortion of the computed reference surface near

object boundaries, which prevents to recognize the exact outlines. To mitigate this effect,

on the one hand, a buffer zone was added with an extent adjusted to the grid resolution, on

the other hand, areas in the original DSM with high slope value (indicating tall buildings

where the distortion effect is the strongest) were marked.

The use case of the study (flood inundation) did not require individual surface objects

to be identified, but the authors suggested an artificial intelligence related technique pos-

sibly fitting for the purpose. The combination of topographic characteristics along with

the available spatial information should be used as input in a neural network to distin-

guish between building and vegetation, which already proved to be a challenge in the

above-mentioned publications.
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2. Background of the study

Another method using elevation data was presented in [10]. The core concept is to use

the information from LiDAR data to generate an elevation image for further processing.

First, the edges on the image are determined, which mostly represent surface objects, e.g.

building and tree outlines.

During edge analysis, quantitative measures are computed to aid the edge classifica-

tion procedure. Among them, there are general attributes (size, height, closure), geometric

properties (orthogonality, parallelism) and shape related information (symmetry, circular-

ity). For all of these values, there are expectations which should separate the buildings

from vegetation areas. Closed edges are a requirement for shape examination and this

does not contradict the domain knowledge about buildings either. Circularity is used to

express the simplicity being present in most building contours. Symmetries based on par-

allel and orthogonal sections are also typical for buildings.

Experiences showed that circularity is effective in filtering out non-building contours

from candidates. However, the geometric properties proved to be decisive at the end, so

it must be pointed out that it poses a limitation to the method. Neither buildings with a

more complex shape, nor those melted together with trees can be recognized easily this

way. The prior identification and exclusion of vegetation areas based on multiple returns

in LiDAR data could be helpful though.

It is possible to use an entirely different toolset for the LiDAR data classification, e.g.

statistics based on geomorphometric parameters [11]. At the beginning of the procedure,

a segmentation process is performed. The seed cells for this are determined by computing

the difference between the original LiDAR DEM and the median filtered one. The median

filtering is capable of removing very high and very low elevation values compared to its

neighbors as long as the window size used for this operation is small enough to prevent

the effects originating from the local terrain changes.

The authors found that a specific range in the positive differences seemed to contain

mostly points close to building outlines. The iterative segmentation algorithm uses exper-

imental intervals of slope and aspect values coming from local elevation differences as

the region growing criteria. After that, the segmented building points and the remaining

background points are divided into connected components. These objects serve as input

for the upcoming statistical analysis.

Each object is represented by a set of parameters (namely mean elevation, standard
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2. Background of the study

deviation of elevation, mean slope and standard deviation of slope) to carry out an un-

supervised classification. The K-means clustering algorithm identified ten clusters and

based on their centroids all objects were assigned to a cluster. The given clusters can be

examined to refine the results. Compactness is a measure which can imply possible sub-

classes. Variance analysis (e.g. ANOVA) can be used to assess the cluster differences and

so to group them together.

The main disadvantage of the method is the required experimental user interaction at

multiple points of the process. The key parameters of the described algorithms were set

manually and the automation might not be possible for general use. Also, the interpre-

tation of the clusters was a manual step. Visualization indicates best the correlation be-

tween clusters and real surface classes, which later can be confirmed by reasoning about

the meaning of the geomorphometric parameters. However, the method has the potential

to identify building subclasses in the form of different clusters and thus giving a more

detailed classification.

Point cloud based approach

From a computational aspect, processing the LiDAR data in a DEM format is the

most effective. Using any other source of information requires more resources, but it can

potentially increase the quality of the results.

Ma [12] used the original LiDAR points in a gridded format for local analysis of the

surface, to prevent error-effects and to achieve higher accuracy. Although this method

also generates its own DEM, some of the initial steps are used later again to recognize the

buildings in the area.

For each LiDAR point, a planar regression surface is derived based on the neighboring

points located in a small window of the grid. Then the distance is measured related to the

examined points and the derived surface. Either the root mean square is computed com-

pared to the regression surface, or the height difference is calculated between the actual

point and its projection to the surface, but both cases require a suitable threshold value

aligning with the vertical accuracy of the data. This leads to a differentiation between

points falling onto planar surfaces (including ground, building roofs and even cars) and

other points of e.g. trees.
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2. Background of the study

After identifying the connected regions, the assumption that the ground segment is

bigger than the largest building in the area is used to select the large regions which will

serve as the basis of the DTM. In this method, the holes marking building segments were

interpolated (unlike in the AHN data set). Using a triangulated irregular network (TIN),

artificial features are introduced into the generated DTM. The building class consists of

the intersection of a height filtered nDSM and the planar points mentioned before. To

refine the results in the visualization, false positive small features can be discarded, and

with a morphology dilation operator building boundary points can be recovered.

The author mentions a few limitations regarding the method. First, only buildings with

a planar roof can be detected which is too restrictive. Additionally, smaller buildings being

partially covered by trees are easily missed.

Hybrid approach

Another study uses LiDAR data together with aerial images [13]. The motivation is

to use complementary sources to achieve high resolution along all dimensions. Aerial

images usually have higher resolution, while laser scanning provides accurate elevation

information.

The LiDAR DEM is initially used to get a vague approximation of the building areas

by applying a height filter. But the main information for further processing comes from

the areal image edges recognized by the Canny detector, which are stored as vectors to

speed up the procedure.

The method relies on perceptual grouping to organize the individual edge segments

into higher level features. In this case, the goal is to determine the outer contours of

the buildings. The method supports both straight lines and arcs to be able to describe

more general shapes. The grouping is based on geometric properties, which are proximity,

similarity, colinearity and overlap. A closure algorithm is needed to create a chain of these

edge segments which represent the building outline. As the buildings have mostly regular

shapes in the real world, a regularization algorithm can be applied as refinement.

The edge detection of the optical image will mix edges by shadows, trees and buildings

together, so the main challenge is to separate them correctly.
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2.5.2 Change detection

DEM-based approach

As it is mentioned in [14], an important prerequisite for change detection is to extract

the common area of the scans so that the corresponding parts can be compared. This study

also requires a spatial database of a building inventory, which makes it harder to apply the

method in arbitrary situations.

Like often before, the DEM format is preferred to speed up the computations. Then

the histogram of the difference grid is analyzed to get the potential constructions and

demolitions of buildings. The further a difference value is located from the mean of the

histogram, the more significant that change is. The authors found that using the stan-

dard deviation of the difference grid as the histogram threshold compared to its mean

is sufficient to detect changes of entire buildings. However, smaller differences, e.g. the

construction of a new floor cannot be detected as easily. This statistical approach alone

cannot differentiate between changes of buildings and other objects, that is why the build-

ing database is needed as well.

The study also refers to the possible shadowing effect caused by skyscrapers, which

means that there can be areas with no LiDAR points and therefore no conclusion can be

drawn for these artifacts. As a solution, density thresholding was used. All polygons were

filtered out, where the laser point density was below the average of all marked areas. The

result consists of demolished, new and unchanged labels, but to avoid errors, the database

should fit the older survey flight.

Another approach uses only the LiDAR data to classify the surface before the change

detection procedure [15]. First, normalized DSM is computed to be able to focus on the

surface objects. Then a region growing segmentation algorithm is parameterized to de-

tect potential buildings. Segments originate from neighboring points exceed the minimal

building height and they can expand based on a maximal slope value. The latter crite-

rion serves for homogeneity to exclude vegetation objects, but other attributes (e.g. pulse

intensity, shape, height texture) are also necessary to correctly classify the segments.

The change detection process sequentially categorizes the segments. A preprocessing

step removes those segments that are not eligible for further analysis (cf. shadowing ef-

fect). If a segment from either scan has no corresponding segment from the other date
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and the difference is significant as well, then a new or demolished building is detected.

For the remaining segments, after applying a morphological opening filter, the difference

grid is calculated to derive heightened, decreased and unchanged labels based on the fre-

quencies of positive and negative changes of height values. In special cases, a change can

be contradictory, which indicates either a wrong segmentation or partial reconstruction of

the building.

The biggest risk of the method influencing the results is the possibility to merge sep-

arate buildings into one segment. To avoid that, a segment splitting step could be intro-

duced, where the data from both scans are simultaneously analyzed. Another challenge is

when the almost identically rebuilt buildings need to be detected too, but for this task, the

LiDAR data only is not necessarily sufficient.

Point cloud based approach

Butkiewicz et al. [16] chose to use raw point clouds in order to achieve the highest

accuracy possible. The study points out, that many steps in a DEM-based approach can

lead to errors in measurements, such as fitting LiDAR points to a regular grid or applying

morphological operators.

To efficiently detect neighborhood relations an irregular triangulation is performed on

the points. For each point of the newer scan, it is determined whether it can be a change

or not. The point is projected onto the older scan, then it is only considered a change if the

point exceeds the allowed height variation based on interpolation from the nearest point

of the old scan.

The obtained set of marked point will contain false positive changes at this phase

because of e.g. pulses returned from antennas or road lights, therefore noise filtering is

highly recommended. In a very simple form, all marked points having no other marked

point as a neighbor could be removed. After that, starting from arbitrary marked points,

the triangulation can be used to extract the 3D model for individual connected changes.

The change models can be filtered as well e.g. based on the area of the 2D projection, the

number of the containing marked points or other measures.

The presented method has another interesting aspect. It uses the horizontal and verti-

cal accuracy values of the point cloud throughout the computation process. That way, it

is less possible that the detected changes come from some measurement error. However,
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higher accuracy can only be accomplished by computationally more demanding proce-

dures. Therefore, it is worth considering, that a high resolution DEM can guarantee the

expected accuracy for as large objects as buildings.
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Chapter 3

Methodology

3.1 Study area

In order to properly showcase the proposed approach, a suitable test area had to be

selected. The most important aspect was to find an area where building constructions

have been carried out between the two epochs of data acquisitions, therefore the building

recognition and change detection capabilities can be demonstrated on the same scene.

The AHN data set provides laser scans for the entire Netherlands, ultimately a smaller

extent of the town Drachten from the northern part of the country was chosen, as shown

in Figure 3.1.

Figure 3.1: Satellite image of the study area. (Source: Google Maps)
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The size of the test area is approximately 0.15 km2. Obviously, this extent with a

smaller amount of data alone is not eligible for performance measurements, but it is ideal

to demonstrate every step of the methodology in detailed images throughout this chapter.

Some additional advantages can be associated with this test area as well. While the scene

mostly contains buildings with regular shapes, there are some special cases which point

out the challenges and difficulties of this study.

The AHN data set is available both in raw point cloud format and as preprocessed

DSM files which are offered both in 5 m and 0.5 m grid size resolution. Among those, the

0.5 m DSM was chosen, so the computational complexity is reduced (compared to raw

point clouds), yet a high level of precision can be achieved in building recognition due to

the expected surface object dimensions. Figure 3.2 visualizes the chosen DSM data set.

Figure 3.2: Visualization of the AHN-3 DSM data set colored by height.

3.2 Building recognition

The fundamental idea originates from the related studies of Wang and Schenk [10]

presented in Section 2.5. Unlike many other approaches, it depended only on the DSM
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data to detect buildings, which is definitely an advantageous characteristic in terms of

required computer resources and makes it worth trying to elaborate a complex approach

with change detection capabilities atop of it. However, while the test data used in the

before mentioned study resulted in mostly closed contours of surface objects for fur-

ther processing, this favorable assumption rarely holds in a more general environment1.

Therefore a more robust contour-based approach had to be designed capable of building

edge detection based on partial contour-lines. In the following sections, I will present the

methodological background knowledge relevant to this study and the detailed analysis of

the steps making up our object recognition and change detection procedure. The proposed

solution consist of the following steps:

1. Detect edges and generate contours.

2. Filter out extremely curved contours.

3. Split contours into consecutive straight segments.

4. Remove possible redundant segments.

5. Identify building contours.

6. Compare multitemporal data and classify changes.

3.2.1 Edge detection

Traditionally, edge detection denotes various mathematical methods in digital image

processing. In greyscale images, edges can be extracted from abrupt intensity changes in

the image pixels. There are different mathematical approaches (e.g. discrete approxima-

tions for the derivative of the image function) that enable detecting edges by examining

the local environment of each pixel.

Based on the exact mathematical computations taking place when applying an edge

detector, different characteristics will describe the resulting edge map. However, some

fundamental behavior will hold for the most commonly used convolutional detectors en-

suring the desired quality for further processing.

• never indicating edge if there is no change in the image at all;

• minimal number of false positives and false negatives;

• the indicated edge falling close to the physical one;

• edges with arbitrary orientation can be detected;

1No sufficing test location could be found within the AHN data sets.
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• the physical edge is indicated only once.

Considering the summary of edge detection above, it is clear that the method is not

restricted to digital greyscale images only. In our case, the DSM data from the laser scans

(or with other words, the height map of the area) represents a suitable analogy to digital

images, as the DSM is just another raster data type. The only difference is that it con-

tains height information instead of intensity values, but this does not affect that the sharp

changes identified by the edge detector will contain the building boundaries among others

and that is the initial step required for a contour-based object recognition method.

Canny edge detector

The Canny edge detector [17] uses a multi-stage algorithm based on gradient edge

detection (meaning the utilization of the gradient operator’s magnitude), including steps

for smoothing the image to reduce noise, filtering the edges to achieve clean, thin contours

and applying threshold values to eliminate weak edges. All that makes it a complex and

flexible method to effectively search for building edges.

In image processing literature, the terms edge and contour stand for the same phe-

nomenon with the conceptual difference that contours group edge pixels together to de-

note object boundaries. In the following, the word contour will be consequently used, as

it describes better the end goal of the method.

3.2.2 Contour characteristics

In this research a general contour representation was assumed, where the detected

contours should be available as a collection of individual connected sequences of 2-

dimensional points. The neighboring points are presumed 8-connected (meaning that hor-

izontally, vertically, and diagonally connected pixels are all considered to be neighbors).

It extends the neighborhood relation of 4-connected points, so the designed algorithms

will be general and capable of operating on specialized data type as well.

Since a contour detecting procedure should be able to produce closed contours, all

contour lines are assumed to be ideal contours, therefore they are treated as if they were

closed contours and the contour parts will be stored for both directions as a result of trying

to perform closure on e.g. a curved line.
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Although the contours meeting the above expectations are not eligible in that form

for further processing, the existing grouping into connected subsets and the internal point

order enables a deep structural analysis for a detailed evaluation.

This contour model was elaborated based on the popular, open-source image process-

ing library OpenCV, but the output of any other library or implementation could be used

instead as long as it is compatible with these restrictions.

3.2.3 Prefiltering

This step is based on the assumption that buildings tend not to have tortuous out-

lines. Using not too restrictive conditions is important to prevent from discarding building

contours. At the same time, the more non-building contours can be filtered out at the be-

ginning of the process, the more efficient will be the method later at the computationally

more demanding steps.

The main idea is the detect extremely curved contour parts while not excluding circu-

lar walls. To do so, a sliding approach is used on each fixed-size subsequence of a contour.

If it is true for the majority of the examined point sequences that they fit into the bounding

box determined by their endpoints, then the contour in question will be kept. It is fore-

seeable that corner segments of the building cannot always comply with this condition,

but this is balanced through the percentage value. Alternatively, if any contour contains a

larger straight segment, it will be kept automatically.

It is clear that both aspects can only work with large enough contours, consequently

isolated smaller contour pieces get discarded at this phase. Fortunately, it is not a huge loss

because it is indeterminable at this point whether such small contours fall to a building

boundary or not. Moreover, the smaller a missing contour part is, the higher the chance

that it will not prevent from detecting the entire building.

In Figure 3.3 all of the detected contours can be seen, while Figure 3.4 shows the

remaining contours after applying the prefilter. It excellently demonstrates the elimination

of small contours and some simplification in vegetation areas.
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Figure 3.3: The detected contours for the AHN-3 data set using randomly generated
colors to distinguish them.

Figure 3.4: The prefiltered contours using randomly generated colors.
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3.2.4 Contour splitting

It is an essential preparation to be able to identify the redundant contour segments

because otherwise it would be nearly impossible (and computationally expensive) to mark

the equivalent subsequences.

The goal is to split each contour into consecutive straight segments, as shown in

Figure 3.5. The challenging part originates from the fact that not all 8-connected pix-

els are also 4-connected, and handling these two cases together could not be done on an

easy and clean solution. If there is a difference along both coordinate axes at the begin-

ning of a segment, the allowed directions can be determined in advance for the segment.

However, a rasterized slanting line will contain neighboring point differences where only

one coordinate axis value changes, so it would not be useful to separate segments for ev-

ery distinct relation type between 8-connected raster pixels. On the other hand, starting

with a partially 0 difference vector for a segment does not mean that it cannot be also a

slanting line as a whole. There should be a limitation of course, that in the same segment

there cannot be deviation to both directions along the axis showing initially 0 difference.

Even after thorough consideration, one issue remains to be resolved. Namely, always

Figure 3.5: The identified straight contour segments using randomly generated colors.
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looking at the difference of only two neighboring points locally, the method will not be

able to differentiate among segments with reorganized point-differences, e.g. between a

perfect perpendicular corner and a rasterized slanting line. To avoid that, an extra post-

processing step was embedded split these segments further into axis-parallel parts.

To sum up, at this phase three important aspects were contradicting to each other:

i) the computational efficiency, ii) not having limitations to the minimal segment size,

and iii) the additional difficulty in achieving order independent partitioning for noisy,

branching contours too. As these goals could be optimized against each other, meeting all

three expectations cannot be achieved.

3.2.5 Redundancy removal

Figure 3.6: The identified contour segments grouped by direction using randomly
generated colors.

Using the exact and clear output of the contour splitting phase, there is not much

complexity left at this step. For efficiency reasons, the similarity between segment end-

points along with segment distance is tested first (independently from the point order of

the segment of course). Knowing that noises can confuse segment boundaries from dif-
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ferent directions, a point-wise comparison serves as a fallback solution to delete as many

redundant contour segment as possible. After that, the consecutive segments having sim-

ilar direction are grouped together to reduce the overall number of segments. Figure 3.6

illustrates the intermediate state of the process after this step.

3.2.6 Building filter

After the necessary contour manipulations, the most important part regarding the re-

sults is to collect the building contours and to discard everything else.

At first, contours containing fewer points than a threshold are filtered out. It is rea-

sonable to expect the buildings to have a minimal size in all dimensions. Furthermore, it

would be risky to draw established conclusions from such few data. After that, multiple

conditions are tested and if a contour meets more than one of them, it will not be catego-

rized as a building. Each condition is just a potential indicator for a contour not denoting

building boundary, therefore multiple must be fulfilled for the final conclusion.

• The distribution of the directions determined by the contour segments is calculated.

It is suspicious if the majority of the equally divided angle partitions is present.

• The proportion of the complex segments is calculated. A segment is considered

complex if the number of points contained in it is significantly more than the size

of a straight line between the segment endpoints.

• The proportion of the longer segments is also used as a condition.

• The last evaluation aspect is the average segment size.

Despite the greatest effort to reliably create closed, complete contours without restric-

tion to building shapes, it could not be achieved in noisy or complex areas (see Figure 3.7),

therefore an approximating solution was used in the form of computing the convex hull

from the contour points. Unfortunately, this can introduce easily some false positive raster

pixels in the result, e.g. in case of buildings with concave floor area, or nearby vegetation

contours attached to the building outline.
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Figure 3.7: The final contours using randomly generated colors.

To reduce the impact of these false positive parts as much as possible, the goal is

to eliminate some of the noise in a contour segment chaining procedure. If most of the

segments can form a roughly closed contour then only the successfully chained segments

are kept, otherwise all contour segments are used to create the convex hull.

In Figure 3.8 and 3.9 the output of the building recognition part of the method can be

seen for both the AHN-2 and the AHN-3 data sets, respectively.
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Figure 3.8: The generated convex hull polygons of the AHN-2 data set using randomly
generated colors.

Figure 3.9: The generated convex hull polygons of the AHN-3 data set using randomly
generated colors.
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3.3 Change detection

The whole building recognition process serves as the basis for the change detection

phase where the raster pixels of the generated convex hull polygons will be compared to

determine changes regarding the buildings of the scene.

3.3.1 Tessellation statistics

The basic concept is to describe each existing overlapping polygon pair through the

available height data and thus be able to draw conclusions with regard to other features of

the overlapping segment as well.

This way, a simple statistics consisting of the extent of a segment (given in raster pix-

els) supplemented with the average height difference for the same area can be computed.

To achieve valid results, preparing for outlier values is essential, and it occurs frequently

in raster pixels of scattered spots with no original laser scan data.

The procedure produces a variety of building and non-building polygon pairs identi-

fied by their unique identifier generated for each convex hull. For efficiency and consis-

tency reasons, topology information is also stored, meaning each building polygon from

one epoch is associated with every overlapping polygon from the other epoch. It makes

it possible to ignore the insignificant overlapping areas from the other epoch, as it is not

realistic to carry out a reconstruction on less than 10% of a building.

3.3.2 Classification

Obviously, the previous statistics will result in the following four cases which means

a tessellation with no overlaps and no gaps for the test area.

1. building segment with another building segment

2. building segment with non-building segment

3. non-building segment with building segment

4. non-building segment and non-building segment

Among them, the category with two non-building segments does not really provide

additional valuable information because it aggregates height differences for the largest
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segment of the area by far, where the underlying real-world changes are unknown and can

be varying.

The rest of the pairings contains at least one presumed building area, which makes it

possible to conclude for demolitions, new building and reconstructions.

When two building segments are compared it is considered unchanged unless the aver-

age height difference exceeds 2 meters. The convex hull approach can cause false positive

building raster pixels as already mentioned before, but these have a relatively small impact

on the average over the entire building area. Furthermore, in many cases, no significant

change takes place in these false positive raster pixels either.

Figure 3.10: The classification result of the building change detection.

If a building and non-building segment form a pair together, that not necessarily means

there is no building relating the detected one. Complex automated methods usually cannot

achieve 100% accuracy on an arbitrary data set. Several decisions can be responsible for

false negative outcomes, e.g. i) the edge detector missing a building contour, ii) acciden-

tally discarding crucial contour segments, or iii) the misclassification of buildings with

unusual characteristics. However analyzing the height difference compared to the detected

building is an effective tool to correct previous mistakes, therefore to reconstruct missed
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buildings. Again, the 2 meters threshold was chosen to denote the significant changes.

The final result of the method is visualized in Figure 3.10.
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Implementation

The prototype implementation for the methodology described in Chapter 3 was carried

out in standard C++11 as part of the CloudTools geospatial framework. CloudTools – de-

veloped at Eötvös Loránd University – aims to create an easily reusable, high-abstraction

level, operation-based software library for raw point cloud and DEM processing.

As DEM files (preprocessed from the original point cloud) were selected as the input

for the proposed algorithm as discussed in Section 3.1 due to computational and storage

space efficiency, the implementation strongly depends on the GDAL/OGR2 geospatial and

geoprocessing software library for the input and output management of the spatial data.

The OpenCV3 (Open-source Computer Vision) image processing library was utilized for

contour extraction, filtering and processing through the provided C++ interface. The im-

ages in this study used for the visualization of the results were exported from QGIS4, an

open-source geographic information system application.

The Visual Studio 2017 IDE served as the development environment on a 64-bit

Windows operating system.

4.1 Architecture

The implementation follows the design principles and architecture of the CloudTools

library. The complete algorithm is divided into a sequence of smaller operations, which

yields multiple advantages:

2GDAL/OGR: https://www.gdal.org/
3OpenCV: https://opencv.org/
4QGIS: https://www.qgis.org/
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• it provides a higher abstraction level and reusability of the parts;

• it enables to perform flexible changes on the workflow;

• it makes the intermediate results of the process easily retrievable.

The UML class diagram shown in Figure 4.1 demonstrates how the implementation

fits into the frames of the CloudTools library. Each class is responsible for a corresponding

task of the method described in Chapter 3. and they are derived from the abstract base

class with the appropriate abstraction level.

On the most abstract level, the Operation class indicates a general transformation

from arbitrary data type to any other (Any → Any). Processing of specifically DEM

data sets is represented by the Calculation class ({DEM} → Any). Finally, the

Transformation class can be used as a superclass for mapping a collection of DEM

files to an output DEM file ({DEM} → DEM ).

Figure 4.1: Class diagram of the prototype implementation.

In the prototype implementation of this research, custom Operation subclasses

were created:

• From the initial DEM files, the ContourDetection class extracts a collection

of contours.

• The contour filtering, splitting, classification and further processing are

implemented in the ContourFiltering, ContourSplitting,

ContourSimplification and ContourClassification classes.

• Finally, for conversion between raster and vector data types, the

ContourConvexHullRasterizer maps the contour collection to poly-

gons in a raster format. The BuildingChangeDetection class generates
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the final DEM output by processing the original AHN DSM input files and the

rasterized building polygons.

The workflow diagram in Figure 4.2 is a concise representation of the entire

method. As the diagram shows, the tasks preceding the change detection of buildings

(BuildingChangeDetection) have to be executed twice, because there are two in-

put sources (AHN-2 and AHN-3). Since there is no data dependency between them, the

two sources can be easily processed in a parallel manner, improving performance.

Figure 4.2: Workflow diagram for the proposed algorithm.
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4.2 Implementation remarks

As for the implementation of the Canny edge detector, the recreation of this well-

known algorithm did not seem necessary, as the widely used image processing library

OpenCV could be utilized. Even if using its built-in functions prevents us to access all of

the partial results of the edge detection procedure, the provided parameters to customize

the behavior can ensure the required flexibility. Although a general solution would deduce

the parameter values, in this particular case the main goal is to detect all significant edges

and there is not enough information for a sophisticated distinction between edges based

on solely the height data of arbitrary areas. Besides, the needed computational investment

is not ideal either for a small possible quality gain compared to rational reasoning.

All parameters for customization are related to the capability of the edge detector to

filter out weak edges. The threshold values set up a condition for the calculated gradient

values, and the flag defines the computation used for that gradient value. The parameters

are adjusted to reliably detect at least 3 meters tall buildings after the height map data is

transformed into an 8-bit greyscale image. Parameters5:

• threshold1: the lower threshold for the hysteresis procedure

• threshold2: the upper threshold for the hysteresis procedure

• L2gradient: a flag, indicating an option for more accurate computation

As a result, a binary image is generated, which can be processed by a procedure for

finding contours also provided by OpenCV. According to the documentation, it is based

on the algorithm described by Suzuki [18]. Unless proven otherwise later, keeping highly

optimized solutions for typical challenges seem to be the right decision again.

The optionally generated hierarchy information is not helpful with noisy contours.

Nevertheless, using the retrieval mode do discard nested contour is useful to reduce the

number of all detected contours. The approximation method serves as a tool for storage

efficiency by simplifying the contours in terms of the number of stored points, but this

would prevent contour analysis necessary for later steps of the method. Parameters6:

• hierarchy: storing hierarchy information

• mode: contour retrieval mode
5https://docs.opencv.org/3.3.0/dd/d1a/group__imgproc__feature.html#

ga04723e007ed888ddf11d9ba04e2232de
6https://docs.opencv.org/3.3.0/d3/dc0/group__imgproc__shape.html#

ga17ed9f5d79ae97bd4c7cf18403e1689a
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• method: contour approximation method

It generally holds that each detected contour starts with a point with minimum Y-

coordinate value which is followed by 8-connected points from the counterclockwise di-

rection. After that, there are many possibilities for the actual ordering of the included

points depending on the exact shape of the contour. It is worth mentioning that the re-

dundant contour segments do not always consist of the same set of points, presumably

because sometimes more points are part of the contour than it is necessary for the mini-

mal connectivity among them.

Based on these observations and the assumed contour representation, the biggest in-

convenience was that the contour parts almost always had the same starting and ending

point because of the redundancy (the ideal, truly closed contours were the only excep-

tion). Consequently, no conclusions could be drawn at first glance, the computational cost

was always proportional to the size of the contour.
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Results

The results from a functional point of view were already showcased on a study

area through Chapter 3. This chapter focuses on the performance results of the proto-

type implementation in Section 5.1 and on the verification of the building recognition in

Section 5.2. Finally, the results and interesting issues are discussed in Section 5.3.

5.1 Performance

To carry out the performance testing, the following test areas with increasing size both

in area and file size were chosen:

• t1: the study area in Drachten — 0.15 km2 — 2MB

• t2: the university campus in Delft — 2.14 km2 — 33MB

• t3: the city center in Delft — 8.64 km2 — 90MB

Task
Execution time

t1 t2 t3

building recognition 7.6 sec 273 sec 970 sec

change detection 18 sec 451 sec 1760 sec

Table 5.1: Execution time in seconds for test areas with increasing extent. The column
headers are referring to the test areas described above.

Table 5.1 contains the performance results for the different test areas executed on a

computer with a 3rd generation Intel mobile processor having 2.5 GHz base frequency,

on a single CPU core. Each value represents the average of five individual measurements.
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The row for building detection shows the results when the process is stopped right after

creating the building polygons for both epochs, i.e., no change detection takes places. The

second row with change detection stands for the entire procedure, including the generation

of the intermediate results for building recognition.

According to the results, more than half of the computation time is needed for the

building recognition part in case of a test area with a considerable extent. For the study

area t1, the program executes so quickly that the communication with the hard drive could

have a significant impact on the proportions among the measurements.

The most important aspect to be discussed is the time complexity of the algorithm.

Evidently, it takes more than linear time, as the execution time increases faster than linear

with the size of the input. Looking into the details, the Canny edge detector algorithm has

O(n log n) complexity where the n denotes the number of raster pixels in the DEM file.

Besides, the implementation of the proposed algorithms is of polynomial time (O(nk))

in the number of contours or building polygons at worst, because those are always inde-

pendently processed from each other and the computationally more demanding parts take

place for the inner structure of the individual elements.

As already mentioned in Section 4.1, having no data dependency between the mul-

titemporal data sets in the building recognition process makes simultaneous calculations

possible using parallelism, obviously at the cost of doubled memory usage.

5.2 Verification

The governmental TOP10NL7 public data sets contain building records for the

Netherlands. The verification process compares the official building polygons with the

ones detected by the presented method. However, it is not easy to guarantee that the data

acquisition date for the building records and the laser scanning are essentially identical,

therefore mistakenly inaccurate results might be possible. Moreover, the misregistration

of buildings can also lead to systematic translation errors. The TOP10NL building layer

over the study area t1 is displayed in Figure 5.1.

The verification tool of the CloudTools library produced the following results dis-

played in Table 5.2 for the AHN-3 data set from around 2014 and the TOP10NL building

7TOP10NL: https://zakelijk.kadaster.nl/-/top10nl
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Figure 5.1: The building polygons of the TOP10NL building records on the study area t1.

records from November of 2015.

The basic verification option uses a simple raster pixel-wise comparison. Each marked

pixel in the output is categorized as either approved or rejected based on the reference

building raster points. The percentage value is calculated from the number of approved

pixels divided by the number of all marked pixels.

The corrected variant tries to eliminate the effect of the systematic translation errors,

therefore misclassifications near to building boundaries are reevaluated.

Mode
Accuracy

approved rejected ratio

Basic 211 608 px 47 324 px 81.72%

Corrected 231 240 px 27 692 px 89.31%

Table 5.2: Verification results for the building recognition output on the AHN-3 data set
of the study area t1.

The results, 81.72% and 89.31% respectively, are acceptable considering the fact that

the contour of the large warehouse building on the right side of the study area could not
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be well approximated because of the nearby parking trucks, which lead to a significant

amount of false positive raster pixels. The secondary source of the false positive results is

the convex hull approach for representing building contours further increased by vegeta-

tion contours merged together with actual building contours.

Note. The verification process could be further improved by calculating also the false

negative results indicating missed buildings.

5.3 Discussion

After examining various spacial surface objects on the selected test areas and con-

sidering other possible corner cases, some limitations for the method in its current form

could be determined.

Limited information content. Using only the surface data sets as the input for the

method can sometimes lead to difficult situations. The height of a detected surface

object compared to its surroundings cannot be determined easily, that is a reason

why many studies use the DSM and a computed DTM together. It is hard to detect

if a building contour is distorted by nearby vegetation without introducing limita-

tions to the shape of the building. In this case, the multiple return information from

the original point cloud (or from some rasterized version) could help. But as always,

more data requires more computational resources.

Equal contours. Each contour from the height map image represents the same local

sharp height difference, independent from its meaning in the scene. Nested contours

(e.g. chimneys, inner courts), separator lines in multi-level buildings and connecting

corridors between buildings are equal to real boundary contours. Therefore, decid-

ing whether a building complex is only one building or contains multiple buildings

is a challenge.

Other surface objects with regular shape. Large trucks, containers, ships or even a

heap of earth on construction sites can have a rectangular shape resembling a build-

ing and resulting in false positive detections.
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Artificial contours. The DSM can contain scattered spots with no data acquisition from

the laser scanning. Not using a morphological operator or interpolation techniques

leads to artificial contours in the scene.
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Conclusion

I presented a method in this study for contour-based building recognition and change

detection from airborne LiDAR which could be directly applicable for various tasks facing

certain GIS challenges. Automated and efficient processing on rapidly increasing data

sets, e.g. for object recognition purposes is an active and important topic nowadays.

Utilizing contours generated from the height map of the area for building recognition

made it possible to work out a method providing favorable computer resource (especially

memory and storage space) requirements compared to other studies through reducing the

number of required input data sets. Such optimization could be particularly relevant con-

sidering the vast amount of laser scan data provided by state-of-the-art LiDAR technology.

The performance analysis of the prototype implementation showed an advantageous

computational complexity having great practical importance for the proposed algorithm.

To compare epochs of multitemporal data sets for change detection purposes regard-

ing the buildings of the scene, I worked out an approach based on possible pairings of

identified building contours represented by their convex hull polygon, and successfully

achieved a kind of reconstruction capability in case of lack or loss of information. These

characteristics together with the validation results of the test area are promising signs for

the robustness of the method especially with improvement possibilities already in mind.
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6.1 Future work

During the implementation phase, multiple ideas came up to further improve the ex-

isting solutions.

• More complex procedures could probably result in a more robust method. Trying

to merge incomplete contour fragments should reduce the missed buildings in the

area. The building filtering phase could be supplemented by other conditions based

on global shape analysis e.g. using principal axis determination.

• Atop of the refined building recognition process, a multi-level output system with

confidence values could be elaborated to express the reliability and successfulness

of the previous steps.

• The convex hull representation of the contours should be refined by partitioning the

polygons into convex segments. This could have a positive effect on the validation

result because it would eliminate a significant source of the false positive regions.

• Finally, the computational efficiency should be examined too. It is straightforward,

that the epochs could be processed parallel, but also smaller parts of the method

could be potential candidates for parallel computing.
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