
TDK-dolgozat

Anett Fekete

Change Detection of Vegetation Based
on LiDAR Data

EÖTVÖS LORÁND UNIVERSITY

FACULTY OF INFORMATICS

DEPARTMENT OF SOFTWARE TECHNOLOGY AND METHODOLOGY

Author:

Anett Fekete

Computer Science MSc

V. grade

Supervisor:

Máté Cserép

Assistant Lecturer

Budapest, 2019

Contents

1 Introduction 3

2 Related work 5

2.1 Data acquisition . 5

2.1.1 Airborne LiDAR . 5

2.1.2 Terrestrial LiDAR . 6

2.1.3 Further methods . 6

2.2 Data formats . 7

2.3 Classification of land coverage . 8

2.4 Change detection in point clouds . 9

2.4.1 Binary and quantifiable changes 10

2.4.2 Change detection of vegetation 11

3 Analysis and specification 14

3.1 Dataset description . 14

3.2 Methodology . 16

3.2.1 Producing canopy height models 17

3.2.2 Low-pass filtering . 19

3.2.3 Elimination of low points . 21

3.2.4 Counting and collecting local maximum points 22

3.2.5 Construction of a cluster map - tree crown segmentation 22

3.2.6 Morphological filtering . 27

3.2.7 Cluster pairing . 29

3.2.8 Difference of tree heights . 32

3.2.9 Difference between the volume of trees 33

4 Implementation 34

CONTENTS

4.1 Architecture of CloudTools . 34

4.2 Architecture of the prototype implementation 37

5 Results 40

5.1 Sample territories and performance . 40

5.2 Test results . 41

6 Conclusion and future work 44

Acknowledgements 46

A Height differences 47

Bibliograhpy 48

List of Figures 52

List of Tables 53

2

Chapter 1

Introduction

The change detection of vegetation is a very important field whose results are used in

various practical applications: experts utilize these results during city planning because

preserving vegetation in urban environment is getting more and more important. Another

corresponding application is in the protection of the environment which has grown to a

very serious issue from the viewpoint of climate change.

LiDAR (Light Detection and Ranging) is a fairly new concept among geoinformatical

scanning methods. It was first used shortly after the invention of laser, in the first half of

the 1960s. LiDAR is a possible alternative for raster scanning although not as widespread

due to the high cost of laser scanning. Apart from the ones listed above, point clouds

produced by laser scanning are utilized in various fields of science from meteorology to

archaeology. There are plenty of options for the application of laser scanning: airborne,

terrestrial and mobile scanning are all in practice.

Change detection and landcover classification are well-researched topics for which

several manual or semi-automatic methods exist [11, 26]. These algorithms are usually

applicable for only small areas. The goal of this research is to define an automatic method

of comparing the state of vegetation and determining the changes between individual trees

between two epochs which is also applicable to large urban and suburban areas.

During my research, I utilized and combined already existing methods and created a

new automatic clustering algorithm to cover the trees in a scanned area. The main purpose

of this method is to quantify the changes of trees in an area between scanning epochs. This

includes changes in canopy volume, tree height and tree presence. A prototype implemen-

tation was also made. This implementation was tested on the AHN dataset which covers

3

1. Introduction

The Netherlands.

The rest of the thesis is organized as follows. Chapter 2 gives an overview of the

applications of LiDAR and how existing change detection algorithms work. Chapter 3

proposes a description of the test dataset and my methodology for change detection of

vegetation. In Chapter 4 I describe the implementation circumstances. Chapter 5 gives an

overview of the results of the research. Finally, I conclude and summarize my work in

Chapter 6.

4

Chapter 2

Related work

Light Detection and Ranging (LiDAR) is an active remote sensing system that is used

to determine the distance between the target surface and the sensor. This is done by the il-

lumination of the target with pulsed laser light and measuring the reflected pulses. LiDAR

was first used in the early 1960s and became generally known after the Apollo 15 mission

in 1971 when the method was used to map the surface of the Moon. [15] LiDAR is also

known as laser scanning.

LiDAR uses multiple different types of light for illumination, ultraviolet, near infrared

and visible. The illuminated targets can be of a wide range of materials, like rocks, rain,

clouds, non-metallic fabrics or even chemical compounds. This allows LiDAR to be ap-

plied in a broad range of disciplines, such as geodesy, archeology, geography or forestry.

The method is mainly used to create high-resolution maps for its applications.

2.1 Data acquisition

The two main types of application are airborne and terrestrial. Multiple viewpoints

are taken into account when deciding which type is to be applied, e.g. the purpose of the

data, the size of the target, the cost of detection etc.

2.1.1 Airborne LiDAR

As the name suggests, airborne laser scanning (ALS) is when a sensor creates a 3D

point cloud model of the target area while attached to a flying aircraft. The scanning is

mostly perpendicular to the direction of the flight. By using airborne LiDAR a model of

5

2. Related work

the terrain layout can also be constructed, since vegetation can be easily distinguished

and filtered from the data set so trees and other tall plants do not conceal other objects

underneath them. This is also useful for purposely filter any object other than vegetation

which is an important segment of this study.

2.1.2 Terrestrial LiDAR

When the sensor is placed on the Earth’s surface, it’s called terrestrial laser scanning.

The two main types are stationary (TLS) and mobile (MLS). Stationary terrestrial laser

scanned data is collected from a fixed point, hence the point clouds created through scan-

ning can be matched with digital 2D images taken at the same location. Thereby a more

realistic 3D model can be made than with other technologies. Terrestrial LiDAR is most

common as a survey method, when the exact features (location, height, width) are needed

to be measured of the scanned area, e.g. at construction sites.

When a scanner is attached to a moving land vehicle (e.g. a car or a train), it is named

mobile terrestrial laser scanning. By utilizing two or more sensors, the method is guaran-

teed to take all measurements needed to create an adequate 3D model and there is no need

to collect individual measurements. By extending such a system with a navigational unit

consisting of an integrated global navigation satellite system (GNSS) and an inertial nav-

igation system (INS), a mobile mapping systems (MMS) is formed, capable of recording

dense point clouds with high positional accuracy while the sensors are moving. It is also

common to further extend an MMS with auxiliary high-resolution raster cameras which

create raster imagery synchronously with LiDAR scanning thus adding RGB metadata to

the point cloud.

2.1.3 Further methods

Beside classical geospatial applications, the LiDAR technology continuously find its

way into further industrial segments, like the operation of autonomous vehicles, e.g. self-

driving cars. While professional high-density LiDAR sensors are still quite expensive

nowadays, multiple experiments have been carried out on how to manufacture low-cost,

but adequate sensors and integrate them with gaming devices, and most recently aug-

mented, virtual and mixed reality applications. The commonly used devices nowadays

6

2. Related work

are Kinect range cameras, smart phones (the most significant try was Project Tango [10,

9] by Google which was terminated in 2017).

2.2 Data formats

Geospatial applications might use raw or preprocessed point clouds. For example, a

preprocessing method could be the elimination of false returns. The most common for-

mats of this are LAS, and its compressed version LAZ.

The irregularity of point clouds increase the algorithmic – and thus the computational

– complexity of analyzing and comparing point clouds. To address this issue a raster grid

can be interpolated based on the original point cloud, named a digital elevation model

(DEM). The vertices contain the accumulated height values, calculated by e.g. the inverse

distance weighting (IDW) algorithm [21, 14], typically represented in GeoTiff format.

This model also reduces the number of data points to analyze, which can be controlled

by the grid size of the DEM. For many applications the high density of the point clouds

is not necessarily required, yet a more inaccurate, but more easily manageable model is

favorable. Digital elevation model types can be further categorized by their contents, as

depicted in Fig. 2.1 and described as follows:

Digital elevation model (DEM) is a generally used phrase for models constructed from

point clouds. It is a regular grid that contains altitude values in its grid points. DEM

is a popular data format which facilitates the utilization of raw point clouds.

Digital surface model (DSM) is a format that contains every object (buildings, vegeta-

tion, powerlines etc.) that was captured by LiDAR in the point cloud.

Digital terrain model (DTM) is a model of the bare surface of the Earth. Unlike DSM,

objects are eliminated from the model. When considering vegetation, DTM typi-

cally contains surface height to count returns from the ground. In the case of build-

ings, the height values are either interpolated from the neighbouring values or get

an extremal value, a so called nodata denotation.

7

2. Related work

Figure 2.1: The difference between DEM, DSM és DTM.
Source: https://www.wikipedia.org/

2.3 Classification of land coverage

In geospatial terms, classification is the arrangement of objects into smaller groups

(classes) based on their attributes and relationships. The main classes for the topic of this

study are urban objects and vegetation. The latter being important in terms of this paper,

this means distinguishing living and lifeless objects, such as rocks and bodies of water.

Living beings, plants can be ranked by certain qualities, e.g. type, height, or in a more

specific case, canopy density of trees, etc.

Rasterized satellite images and particularly the multispectral imagery are still the main

data source since they are cheap and easy to obtain - compared to LiDAR. Several satel-

lites orbits the Earth for the continuous acquisition of satellite imagery, the most important

ones are the Landsat and SPOT satellites. A rasterized image contains a grid that encodes

the geographic data in the pixel values and locations. A multispectral image contains im-

age data in specific wavelength ranges across the electromagnetic spectrum, including

visible, infrared and ultra-violet light. These images do not make feature type identifica-

tion easy, that is why the collected data needs to be classified at first, followed by various

data enhancement techniques.

LiDAR on the other hand, although useful in classification, is expensive and limited,

meaning there are no comprehensive LiDAR records of the Earth, yet it is still a promising

research topic, as it is getting cheaper and more widespread. One of the greatest advan-

tages of LiDAR is that instead of examining only images, it offers the opportunity to

compare 3D point clouds which not only makes classification, but filtering temporary ob-

8

https://www.wikipedia.org/

2. Related work

jects like people and vehicles, and change detection way easier than 2D imagery. On the

other hand, the comparison of point clouds is definitely more complex algorithmically

compared to raster images since the points are not likely to be located in the same spa-

tial point when examining multiple point clouds from different epochs. In fact, significant

differences may also occur in the quality and density of the same point cloud which might

make processing even more difficult.

In their paper, Antonarakis et al. [1] describe two models to distinguish natural and

planted forestry, one of which includes ground hits while the other one does not. The

former relies on the use of bimodal distribution skewness and kurtosis models. A skew-

ness value and a kurtosis value was chosen to define which pixels belonged to a natural

forest, and which ones belonged to a planted one. This method also proved to be useful

in determining if the tree was younger or mature. The other referred method was created

using kurtosis and skewness layers that were not influenced by the ground or the ground

vegetation, thus making the corresponding values different. A percentage of canopy hits

model (PCM) was also taken into account for the sake of a more accurate classification.

Bellakaout et al. [2] mention a classification method that identifies and utilizes differ-

ent contour types by which objects can be classified. The paper describes four different

object classes that contain terrestrial objects identified by contours: superior contour, infe-

rior contour, uniform surface and non-uniform surface. These classes allow the extraction

of soil, vegetation, buildings and roads.

Song et al. [22] describe a study whose aim was to evaluate the use of LiDAR data

in land cover classification. The key of this method is to classify objects based on the

intensity of reflection. The point clouds were converted into grid form by the IDW and

the Kriging interpolation methods. The conversion created some noise in the dataset that

had to be filtered. Afterwards, the acquired intensity data was ready to be divided into

four classes: grass, tree, asphalt road, and house roof.

2.4 Change detection in point clouds

First and foremost, the goal of change detection is to identify changes in the examined

area that occurred between the epochs when the datasets were formed. As mentioned

9

2. Related work

above, this is not always an easy task; it is seldom possible to repeat individual point

measurements.

2.4.1 Binary and quantifiable changes

There are two distinct types of change detection: binary and quantifiable change. The

former is a simple approach, looking for only the existence of a change in the scene.

Its result is mostly a binary map where no change is indicated by 0, change is indicated

by 1. Quantifiable change, on the other hand, is in search of a more complex answer to

non-binary questions that are targeting the ways the change went down. Vosselman et. al

[24] were the first to separate the two types, naming the binary type as the actual change

detection and calling the other one deformation analysis.

Binary methods

• 21
2

dimensional visibility maps: The dimension of the point cloud can be reduced

to 21
2
D if the observation happens from a fixed scanner position. This way, objects

can appear, disappear, and move in the point cloud, revealing contingent changes

in the scene. As Vosselman et al. [24] describe citing two examples, a spherical

coordinate system is used to determine if there are any changes in the point clouds

by transforming the dataset that was captured later (and perhaps from a different but

fixed stand-point) into the coordinate system. Afterwards, points from the reference

cloud are looked for in the new cloud; the point can be present and represent or not

represent an object at its location or can be invisible because of occlusion.

• Direct DEM comparison: This method applies a simple subtraction to digital ele-

vation models, followed by corrective movements of the results to eliminate errors

caused by misregistration. Two example usages were described by Vosselman et al.

[24]. It can be used in both urban areas and nature. In addition, it is worth noting

that direct DEM comparison is a decent quantifiable method as well, since exact

height and volume changes can be measured by comparing DEMs.

Quantifiable methods

• Pointwise deformation analysis: Most approaches offer methods for change detec-

tion that are based on the DEMs constructed from point clouds but there are also

10

2. Related work

existing methods that examine raw point clouds in favor of achieving more accurate

results. Butkiewicz et al. [3] describe a change detection method in their paper that

find deformations in urban environment, both vegetation and buildings over time

using raw LiDAR point clouds. They calculate bounds for what could be scanning

error or geologic variation and compare the distance of points in different scans.

This method is capable of detecting changes in individual and grouped objects as

well.

• Object-oriented deformation analysis: Mentioned by Lindenbergh et al. [13], this

method takes advantage of the pattern that man-made objects are mostly constructed

by geometric shapes like planes and cylinders. Although these shapes are easily

recognizable by only a couple of points, the cloud still consists of hundreds of

thousands to millions of points. This redundancy might be used to determine every

facet of change in the scene the dataset represents.

2.4.2 Change detection of vegetation

Change detection of vegetation has become a highly important issue in our days since

the development or destruction of the ecosystem is determinant from the point of view

of urban life, including life conditions and urban planning. Expansion of the urban area

and industrialization both mean a great impact to the growth of vegetation, therefore the

changes should be continuously monitored and analyzed.

LiDAR proves to be an effective technology for the monitoring of changes in vegeta-

tion which is mostly represented by irregularly distributed points in the dataset. This irreg-

ularity is helpful when the aim is to monitor changes in vegetation since, as mentioned be-

fore, artificial objects are most likely constructed by geometrically regular hulls. LiDAR-

based monitoring is also efficient because the laser beams easily penetrate through leaves

and the canopy of trees. The denser the point cloud, the easier it is to detect changes in

height and land coverage.

Specifically, multiple return is useful in the change detection of vegetation. Laser

beams gradually grow after leaving the sensor and take the shape of a cone thus they

are able to hit multiple objects and produce multiple reflections due to their size. The data

11

2. Related work

earned from multiple returns caused by beam divergence is a great indicator of the general

and canopy height of a tree. This phenomenon is depicted by Fig. 2.2.

Figure 2.2: Multiple return of laser beams.
Source: Fernandez-Diaz, J. C. Lifting the Canopy Veil - Airborne LiDAR for

Archeology of Forested Areas. Imaging Notes, 26(2). 2011.

When monitoring specifically forestry, point clouds can also be used to determine

if the forest is natural or planted, evergreen or deciduous. In the former case, a certain

regular form can be observed in the general irregularity of trees in the point cloud which

might be illustrated by density histograms. In the latter case, the naturally wider leaves

of deciduous plants have a greater ability to catch and reflect laser beams, making their

dataset have a greater radius than that of their evergreen counterparts.

Not only trees and forestry, but the changes in the total biomass of an area might

be monitored by analyzing multitemporal laser scanned data. The point clouds can be

collected by both terrestrial and airborne laser scanning.

Meyer et al. [16] tried to estimate the biomass change of a 50 ha tropical area. They

collected canopy height metrics and used an importance analytical method to evaluate

12

2. Related work

the importance of the variables. They demonstrated the use of spatial scales in biomass

estimation and determined that they give more accurate results when used on finer scales.

Another LiDAR based change detection method that was specifically aimed at trees

was described by Kaasalainen et al. [12]. In their paper they show a usage of the TIN

model to detect quantitative changes in tree growth and litter production. They created a

flexible surface model of each tree using the QSM method [19] and compared it to the

model created with the TIN model and gave results of 10% accuracy.

In conclusion, it is clear that several different approaches are existing for the change

detection of both natural and artificial environment and they provide more or less accurate

methods. However, these methods are usually manual or semi-automated and they are not

capable to cover large areas.

13

Chapter 3

Analysis and specification

3.1 Dataset description

In order to test my method, I needed a sample area with diverse landscape (contain-

ing both artificial and natural objects) of which there are existing point clouds recorded

in different epochs. The study dataset was Actueel Hoogtebestand Nederland (AHN)1, a

multitemporal point cloud altimetry archive which covers The Netherlands, 41.526 km2

per each data acquisition. There are three different datasets in AHN:

• AHN-1 point cloud was scanned between 1996 and 2003.

• AHN-2 point cloud was scanned between 2007 and 2012.

• AHN-3 point cloud acqusition was started in 2014 and is planned to be finished in

2019.

In regards of the accuracy of the points, there are two important parameters to con-

sider:

• Systematic error: this represents the accuracy of the entire dataset, the deviation

from the actual area. It is hard to detect or sense since it is present in the whole

point cloud. This value is maximum 5cm for every AHN dataset.

• Random error: this is the possible error of a single point independent from every

other. Outliers can be removed from raw point clouds through preprocessing. The

maximum value of this error is 45cm in AHN-1, and 15cm in AHN-2 and AHN-3.
1Actueel Hoogtebestand Nederland: http://www.ahn.nl/index.html

14

http://www.ahn.nl/index.html

3. Analysis and specification

The point density of the datasets [18, 17] also improved over time:

• AHN-1: 0.06-1 point/m2

• AHN-2 and AHN-3: 6-10 points/m2

Raw point clouds are extremely large in the dataset [23], as AHN is built up of 1372

tiles each of which covers 31.25 km2. A single tile is typically over 15 GB (in LAS

format). AHN offers preprocessed DEMs with 0.5m and 5m resolution whose data size is

0.5 GB per tile. In order to spare time and computational cost and attain the most accurate

results possible, I used the 0.5m resolution DEMs for my research.

AHN-1 has significantly poorer density compared to AHN-2 and AHN-3 due to the

less developed technology that existed at the time of scanning, and does not offer 0.5m

DEM, therefore the focus of landcover classification and change detection was set on the

AHN-2 and AHN-3 datasets.

Figure 3.1: Satellite image of the study area.

In order to properly showcase the proposed methodology, a fitting demonstration area

had to be selected, which contains urban environment with plenty of vegetation, prefer-

ably with considerable changes between the AHN-2 and AHN-3 data acquisitions. The

15

3. Analysis and specification

campus of the Delft University of Technology and its surroundings was selected as the

testing area, which fulfills these criteria. The city of Delft were scanned in the years 2008

and 2014 for AHN-2 and AHN-3 respectively.

The steps of Sec. 3.2 will be demonstrated on a sample area of the Delft Campus. This

is presented with Google Satellite image in Fig. 3.1.

3.2 Methodology

The aim of this research is to provide an algorithm which, when executed on a prepro-

cessed point cloud, produces a cluster map out of the dataset that covers every tree in the

area by exactly one cluster. If this is executed on multitemporal point clouds, changes in

tree presence, tree height and canopy volume can be calculated. In order to achieve this,

the following steps are executed:

1. Produce a canopy height model of the DSM and DTM of the area in the same epoch.

2. Remove excess local maximum points from the CHM.

3. Collect the remaining local maximums.

4. Construct a cluster map from the collection of seed points in which one cluster is

equivalent to one tree.

5. Commit morphological opening on the cluster map to erode oulier points.

6. Pair up clusters of the same area in different epochs and seclude trees without a pair

in both epochs.

7. Calculate metrics of change in vegetation

7.1. Calculate the height difference of tree pairs.

7.2. Calculate the volume difference of tree pairs and the total volume difference

of the epochs.

These steps are going to be described in detail in the following sections.

16

3. Analysis and specification

3.2.1 Producing canopy height models

The canopy height model (CHM) represents the height of individual trees that are

present at the examined area. It is constructed by subtracting a digital terrain model

(DTM) from a digital surface model (DSM). This process is depicted in Fig. 3.2. As

discussed before, a DSM contains a point cloud of the top of the surface thus depicts the

terrain and also the natural and man-made environmental elements. On the other hand, a

DTM represents the bare-earth surface, this is why their difference provides a good model

of the vegetation.

The results of canopy height model production are illustrated by Fig. 3.3 and Fig. 3.4.

It can be noted, that the CHM for AHN-2 contains significantly more near ground points

(with a canopy height almost 0) compared to the CHM for AHN-3. This is the result of

a small divergence between the altimetry values contained by the DTM and the DSM for

AHN-2 for the terrain. This issue will be addressed in Sec. 3.2.3.

Figure 3.2: Creation of canopy height model from DSM and DTM [25].
Source: https://www.earthdatascience.org/

17

https://www.earthdatascience.org/

3. Analysis and specification

Figure 3.3: AHN-2 canopy height model. All height values are represented in meters.

Figure 3.4: AHN-3 canopy height model.

18

3. Analysis and specification

3.2.2 Low-pass filtering

Classification should originate and expand from a seed point which is some distinctive

point in the CHM. For trees, the obvious choice is to originate a point set - henceforth

called cluster - from the highest point of the tree. However, a tree might contain multiple

"highest points" (which are not necessarily the same height but are surrounded with many

lower points). This is why clustering will be done by collecting local maximum points

that are the highest points in their surroundings.

Canopy height models are not reliable sources of providing good clustering on their

own because they might contain too many local maximum points thus the future classifi-

cation could result in too many small clusters. This is why the number of local maximum

points needs to be reduced by removing several unnecessary peaks. The elimination was

done by another sweep-line transformation which used a convolution matrix that "swept"

through the CHM and kept all points that are in the close proximity of other points [11].

1. Let v be a sum value and c be a counter value. Define the convolution matrix:
1 2 1

2 4 2

1 2 1


2. Sweep a 3×3 window on the CHM. If a point p in the window contains source data

s, do one of the following:

2.1. If p is in a corner of the window, let v = v + s and c = c+ 1.

2.2. If p is in the center of the window, let v = v + s× 4 and c = c+ 4.

2.3. If p is anywhere else in the window, let v = v + s× 2 and c = c+ 2.

3. After each iteration, substitute the central point of the window by v ÷ c.

This method corrects the data that would distort the further calculations, e.g. multiple

local maximum points in one tree that are too close to each other which would produce a

future cluster to be torn into multiple smaller clusters.

The results of low-pass filtering are illustrated in Fig. 3.5 and Fig. 3.6.

19

3. Analysis and specification

Figure 3.5: Low-pass filtering performed on AHN-2.

Figure 3.6: Low-pass filtering performed on AHN-3.

20

3. Analysis and specification

3.2.3 Elimination of low points

The main goal of my research is to detect changes in specifically trees among vegeta-

tion. The previously filtered canopy height model still contains points that do not belong

to trees. These points typically build up vegetation that are shorter than an average tree

which means they could be erased from the CHM. In order to have only trees in the CHM,

I executed a sweep-line transformation on the model that erased every point below 1.5m.

The results of the elimination of low points are illustrated in Fig. 3.7 and Fig. 3.8.

Remark. The constant of 1.5 m may vary depending on the average height of trees in an

area.

Figure 3.7: Elimination of low points performed on AHN-2.

21

3. Analysis and specification

Figure 3.8: Elimination of low points performed on AHN-3.

3.2.4 Counting and collecting local maximum points

My fundamental aim was to create a cluster map that covers the trees. First, I needed

the seed points of the prospective clusters. As mentioned before, the most reasonable de-

cision was to set the tree tops as the seed points. This was achieved by executing a sweep-

line calculation on the point cloud which ran a 3× 3 kernel matrix (window) through the

points and saved the point to a container if it was located higher than all its neighboring

points, meaning it was a local maximum point.

3.2.5 Construction of a cluster map - tree crown segmentation

Once the seed points are collected, the next step is to construct clusters that cover

the same tree and extend them by classifying the remaining points. In order to be able to

define a cluster map that covers the vegetation tree by tree, 2 constant values need to be

defined:

• Maximum horizontal value,maxh: the assumed greatest horizontal radius that a tree

canopy can reach calculated from its seed point.

22

3. Analysis and specification

• Maximum vertical value,maxv: the assumed greatest vertical difference of the seed

point and another arbitrary point in a cluster.

In order to give a detailed explanation of the algorithm, the following concepts need

to be initiated:

• Neighbors of a cluster are the points adjacent to the cluster but not part of it or

any other cluster. No other limitations are given when collecting the neighbors of a

cluster because they can be used for various purposes that have their own limitations

regarding the neighbors so they are further filtered later.

• Nodata values are the points in the raster where one or more coordinates are miss-

ing. Nodata points can be generated at the creation of DEMs or CHMs when the

point is nodata in one or both source datasets. The exact value of nodata is a manu-

ally given extremal value, usually a very small negative number is sufficient.

Even though a local maximum-decreasing step was described in Sec. 3.2.2, it is still

possible that multiple seed points are present in one single tree. This might occur when

a tree consists of multiple local peaks that surround local valleys [4]. If two (or more)

clusters cover the same tree then they should be merged. In order to determine whether a

valley between seed points is space between two trees, or a local valley in a single tree,

the ratio r of the tree heights and the depth of the valley has to be calculated. For this

calculation, I chose the seed point of the shorter tree, so if r > 1.0, then the valley defines

separate trees, otherwise it is a local valley in one tree. The possible cluster merge cases

are illustrated in Fig. 3.9:

(A) depicts the case where two tall trees are very close. The valley between them is

marking that the seed points belong to different trees.

(B) illustrates the case when a tall and a shorter tree are close. This case does not require

merging either.

(C) shows that when there is a valley inside a (taller) tree, merging is required.

(D) depicts when two shorter trees are close. This case does not require merging either.

23

3. Analysis and specification

Figure 3.9: The four types of possible cluster merges.

Equipped with the collection of the seed points, the constants and the depth of the

valley, the following algorithm is described for the construction of the cluster map:

1. Define the maximum horizontal maxh and vertical maxv radius of one cluster.

2. Construct a cluster for each seed point. Let the set of all clusters be C.

3. Filter the neighbors of every cluster: calculate the horizontal dh(p, s) and verti-

cal dv(p, s) distance of a point p to the seed point s. If dh(p, s) <= maxh and

dv(p, s) <= maxv and p is not a nodata value, then add the point to the the filtered

neighbor set of the cluster.

4. Take all cluster pairs (ci, cj) (i < j) and the height of their seed points z(si) and

z(sj). Construct the intersection of their filtered neighbor sets.

24

3. Analysis and specification

5. Take each point p in the intersection (if there is any), and calculate the sum height

difference dz for z(si) and z(sj) and the height of the current point, z(p).

dz = z(si) + z(sj)− 2× z(p) (3.1)

6. Calculate the ratio r of dz against z(si) and z(sj).

r =
dz

min(z(si), z(sj))
(3.2)

If r < 1.0 and neither of ci and cj are to be merged yet, then list ci and cj to be

merged.

7. Merge the listed cluster pairs.

8. Expand the clusters by the previously determined neighbors. Do not add points that

form intersections twice, nor add points to clusters that no longer exist.

9. Repeat from step 3 until there are no changes made to the cluster map.

At the end of the algorithm, if constants were defined correctly, a cluster map is con-

structed which covers one tree by one cluster. The results of tree crown segmentation are

illustrated in Fig. 3.10 and Fig. 3.11.

25

3. Analysis and specification

Figure 3.10: Tree crown segmentation performed on AHN-2.

Figure 3.11: Tree crown segmentation performed on AHN-3.

26

3. Analysis and specification

3.2.6 Morphological filtering

Morphological image processing [7, 6, 5] is an image-manipulation method that is

suitable for modifying the shape of an image. It inspects a pixel and assigns new value

to it according to the other pixel values in its environment. In the case of my research, it

relies on the existence of pixels instead of their numerical values, therefore it is especially

applicable for the processing of binary images. There are two basic operations:

• Erosion removes the small details from a picture while also reducing the size of

main regions in the image. It is done by erasing pixels from the image boundaries.

Erosion is illustrated in Fig. 3.13.

• Dilation expands existing regions of a pixel by adding new pixels to the boundaries

of regions. It is used to erase holes and refine the shape of images. Dilation is

illustrated in Fig. 3.14.

Figure 3.12: Original image. Figure 3.13: Morphological
erosion.

Figure 3.14: Morphological
dilation.

Source: https://docs.opencv.org/

Erosion and dilation create duality, as they are the exact opposite of one another. They

can be used together, thus produce the two fundamental types of morphological filtering:

• Morphological opening is executed when erosion is done first followed by dilation.

• Morphological closing is executed when dilation is done first followed by erosion.

Morphological opening was performed on the previously constructed clusters the fol-

lowing way:

27

https://docs.opencv.org/

3. Analysis and specification

• Erosion: let Ther(p) be a threshold value which determines the amount of neighbors

of a p point required to be in the same cluster as p in order for p to remain in the

cluster. If Ther(p) < 6 (constant may vary), then p is erased from the cluster.

• Dilation: let p be a point in the neighboring point set of a cluster, and Thdil(p) be a

threshold that determines the number of neighbors of p that are required to be in the

same cluster for p to be added to this cluster. If Thdil(p) > 0 (constant may vary),

then p is merged into the cluster.

Morphological filtering is usually executed multiple times on a dataset in order to

make it more accurate and eliminate holes (nodata values) in the cluster map. For these

reasons, I execute morphological opening 3 times.

This step was preceded by the removal of small clusters that contain too few points

to cover a tree and are most likely the result of DTMs containing tall objects other than

trees such as lamp posts or reflecting points on buildings. As a result of the removal, the

number of clusters was significantly decreased.

The results of morphological opening are illustrated in Fig. 3.15 and Fig. 3.16.

Figure 3.15: Morphological opening performed on AHN-2.

28

3. Analysis and specification

Figure 3.16: Morphological opening performed on AHN-3.

3.2.7 Cluster pairing

After the construction of the cluster map, the next step is pairing up the clusters in the

two epochs and determine which trees lack a pair. It is worth noting that the clusters in

the two maps generally do not cover each other, as the points collected during the data

acquisitions are not located at the same place. This challenge is tackled when a DEM is

created but the irregularity of the original points results in clusters covering the same tree

not being located at the exact same place even in the DEM. This is why I rather have to

determine which cluster in the other map is the closest to the currently examined cluster.

Multiple methods were implemented and tested for pairing:

• The Hausdorff distance [20] of two point sets is a maximin function: the maximum

distance of the cluster to the nearest point of the other cluster. Formally, for sets A

and B the Hausdorff-distance can be defined as [8]:

h(A,B) = maxa∈A(minb∈B(d(a, b))) (3.3)

29

3. Analysis and specification

The distance calculation and comparison require very high computational cost due

to the high number of points in a cluster. Let k be the number of clusters in the

examined AHN-2 cluster map, l be the same in AHN-3, n be the average number

of points in an AHN-2 cluster and m be that of in AHN-3. Since the calculation

requires the distance of every point in an AHN-2 cluster to be calculated to every

point in an AHN-3 cluster and this calculation has to be done to each cluster in

both cluster maps, the asymptotic bounds for the calculation of Hausdorff distance

is θ(n ∗m ∗ k ∗ l).

Remark. Assuming that k = l and n = m as a simplification, the computational

cost can be approximated as θ(n2 ∗ k2).

In order to decrease the consequent long runtime and great CPU time consumption,

a horizontal threshold value Thh was introduced as the maximal possible distance

between two clusters. The examination was limited to check only those AHN-3

clusters that are falling in the range of the examined AHN-2 cluster defined by

Thh. This method eliminates a great deal of unnecessary computation as vegetation

does not change its location over time, so if a pair exists for a cluster then that is in

the close proximity of the cluster.

• Another approach was pairing up clusters according to their distance of centroids.

This calculation was also utilized in the previous method for the elimination of un-

necessary distance calculation between clusters that are overly far from each other

in the first place. On the other hand, the Hausdorff-distance calculation does allow

pairing one AHN-3 cluster to multiple others in AHN-2 thus losing partial injectiv-

ity and distorting results. This problem was handled as follows.

1. Define the maximum horizontal distancemaxhc of any two clusters. Let C2 be

the cluster set of AHN-2 and C3 be that of AHN-3. Let S be the set of pairs.

2. Take every ci (i ∈ 1..|C2|) that is not already paired and search for the

nearest cj (j ∈ 1..|C3|) by calculating the distance of their centroids where

dh(ci, cj) <= maxhc and insert the pair into S. Note, that this can result in cj

paired to multiple clusters in C2.

30

3. Analysis and specification

3. Take each pair from S where cj = ck (k ∈ 1..|C3|), search for the pair where

with minimal distance and erase the others from S. This step results in pre-

viously paired up clusters from C2 getting unpaired. For this reason, a new

iteration is needed to search for a pair for lone clusters.

4. Repeat from step 2 until no new pairs are found. Hence, the pair set is partially

injective.

The results of cluster pairing are illustrated in Fig. 3.17.

Remark. It is worth mentioning that the Hausdorff distance method could be made par-

tially injective by adding iterations similar to how the other method is done. But since

Hausdorff distance is already very costly, new iterations would make it highly ineffective.

Figure 3.17: Detected paired and unpaired clusters.

Detecting unpaired trees

If the algorithm does not find a pair for a given cluster then it is presumable that if it

is present in the first point cloud then the tree it covers was cut between the epochs, and

31

3. Analysis and specification

if it is present in the second one, it was planted some time after the first data acquisition.

The clusters representing these trees are stored separated from the cluster pairs.

3.2.8 Difference of tree heights

Height differences of individually paired trees and average height difference of an area

can be calculated from the data acquired through the previous steps.

• Individual pairs: let C2 be the cluster set of AHN-2 and C3 be that of AHN-3.

Let z(peak(ci)) be the maximum height of a cluster ci where ci ∈ C2, z(peak(cj))

be the maximum height of a cluster cj where cj ∈ C3 and δh(ci, cj) the height

difference of this cluster pair which is calculated as follows:

δh(ci, cj) = z(peak(cj))− z(peak(ci)) (3.4)

If δh > 0, then the tree has grown since the first scan, and if δh < 0. then the tree

has been cut back by some natural or human force. δh = 0 is highly unlikely even

in the case of trees that have already reached their height limit since the scanning is

inconsistent and points do not usually fall to the same exact coordinates in different

inspections.

• Average difference: This calculation also starts with the collection of the highest

points. But in this case I sum up the values of the z coordinates first. As I am

aware of the rough number of trees in the area, I am able to divide the sum by this

number and get the average height of the trees in the area. This method is executed

on both epochs, and extract the former value from the latter, just like in the case

of individual trees. If the difference is positive, the trees have grown since the last

measurement, and if it is negative, then the average tree height has been decreased

either by natural causes or human interference.

The average calculation should be done by separating the tree pairs from the indi-

vidual ones. Appearing and disappearing trees could significantly distort the results

and their data should be considered outliers. This also means that this statistic can-

not be used to determine general conclusions about the vegetation in the area.

32

3. Analysis and specification

3.2.9 Difference between the volume of trees

Once each and every one of the trees in the examined area are located, I am able to

calculate their individual and aggregate volume of canopy. This calculation can only be

done in seasons when there are actual leaves on the trees since they build up the canopy

and provide the volume.

Calculating the volume of a tree is a difficult task if done very accurately since the

clusters that represent tree canopies can be considered completely irregular polygons. It

would be a very high-demanding task to calculate the exact volume of a cluster regarding

computational costs and execution time, so I took advantage of the raster grid instead. Let

Vci be the volume of the cluster ci, z(pn) the height of a point and |ci| the total number of

points in the cluster. The computation of Vci is described by Equation 3.5.

Vci =

|ci|∑
n=1

z(pn) ∗ 0.52 (3.5)

As mentioned in Sec. 3.1, the real distance between two grid points is 0.5m which is why

the multiplication is done by 0.52. After that, the total volume of the trees in the former

epoch is extracted from that of the latter epoch, and similar conclusions can be drawn

from the difference as in the case of the changes in tree height.

The previously described method of volume calculation adds redundancy to the total

volume by adding the space under the canopy and around the bole, and also a smaller

amount around the canopy. However, this does not distort our calculations significantly

because our main goal is to determine the overall difference between the volumes in the

epochs and the distortion is around the same amount in both scans, hence does not matter

when the extraction is executed.

33

Chapter 4

Implementation

The prototype implementation for the methodology described in Sec. 3.2 was carried

out in standard C++11 as part of the CloudTools geospatial framework. CloudTools – de-

veloped at Eötvös Loránd University – aims to create an easily reusable, high-abstraction

level, operation-based software library for raw point cloud and DEM processing.

As DEM files (preprocessed from the original point cloud) were selected as the input

for the proposed algorithm as discussed in Sec. 3.1 due to computational and storage

space efficiency, the CloudTools.DEM module was primarily utilized of the framework.

CloudTools.DEM depends on the GDAL/OGR2 geospatial and geoprocessing software

library for the input and out-put management of the spatial data.

The implementation of vegetation segmentation and change detection was imple-

mented in a new module AHN.Vegetation.

4.1 Architecture of CloudTools

The CloudTools.DEM defines an architecture of DEM processing with an operation-

based concept in focus. The module provides various base classes modularized based on

their input and output types.

Operation (Any → Any) is the most general class that serves as the base class of

all other operation classes. Operation separates the evaluation of a task into 2

phases: i) preparation, which is usually a short activity (e.g. opening input data,

calculating output size) and ii) execution, which carries out the full operation.

2GDAL/OGR: https://www.gdal.org/

34

https://www.gdal.org/

4. Implementation

Operation is an abstract class with two matching overridable abstract methods:

onPrepare() and onExecute().

Calculation ({DEM} → Any) inherits directly from Operation. It extends the

preparation phase from Operation by opening source data and if there are mul-

tiple source datasets (sourceDatasets), it also performs validation. (Checks

whether all sources have the same pixel resolution, use the same projection sys-

tem, etc.) The input metadata is read from the source header(s) and then loaded

into sourceMetadata(). Multiple input sources do not have to cover the exact

same area but they must intersect. The intersection will be the target area whose

metadata is loaded into targetMetadata().

SweepLineCalculation is a subtype of Calculation. It completes the ex-

ecution phase by reading all source data. It expects an algorithm

(computation) in its constructor3 which is then executed iteratively on a

sweeping window of the sources.

DatasetCalculation also inherits from Calculation, but the complete source

datasets for the target area are read and passed to the computation, which

is then performed on a single call.

Transformation ({DEM} → DEM) inherits from Calculation. The addition to

Calculation is that there is a target DEM dataset (targetDataset) for the

target area.

SweepLineTransformation is the correspondent transformation class for

SweepLineCalculation. It is completed with an output file in which it

writes the output data.

DatasetTransformation is the correspondent of DatasetCalculation with

writing the results into an output file.

3The algorithm can be passed as a function pointer, functor or lambda expression.

35

4. Implementation

Fi
gu

re
4.

1:
U

M
L

cl
as

s
di

ag
ra

m
of

C
lo

ud
To

ol
s’

op
er

at
io

n
m

od
el

.

36

4. Implementation

4.2 Architecture of the prototype implementation

AHN.Vegetation defines the structure of point cloud classification and change de-

tection. The module provides a range of classes derived from the classes of module

CloudTools.DEM. The classes follow the flow of my algorithm which is described in

Chapter 3 and depicted in Fig. 4.2.

Difference is a subtype of SweepLineTransformation, capable of calculating the

difference of two DEM files with a sweeping window approach (with the window

size being 1), thus having low memory requirement. Difference was used to

calculate the CHM by subtracting DTM from DSM as it is described in Sec. 3.2.1.

MatrixTransformation is a subtype of SweepLineTransformation, capable of

performing a convolution matrix transformation on a DEM file with a sweeping

window approach. MatrixTransformation was used to decrease the number

of local maximum points with a low-pass filtering as described in Sec. 3.2.2.

ThresholdFilter is a subtype of SweepLineTransformation, capable of erasing

the points lower or higher than a given threshold from a DEM file with a sweeping

window approach. ThresholdFilter was used to eradicate the points that are

lower than an average tree as described in Sec. 3.2.3.

Figure 4.2: Flowchart of the algorithm.

37

4. Implementation

CollectLocalMaximum is a subtype of SweepLineCalculation, capable of

searching for the local maximum points in a DEM file with a sweeping window ap-

proach. CollectLocalMaximum was used to collect the local maximum points

into a container as described in Sec. 3.2.4.

TreeCrownSegmentation is a subtype of DatasetCalculation, capable of con-

structing a ClusterMap of trees from prefiltered CHM produced by the

ThresholdFilter and the tree top points as seeds provided by the

CollectLocalMaximum. The TreeCrownSegmentation class takes care

of constructing, iteratively expanding and merging clusters as described in

Sec. 3.2.5.

MorphologyClusterFilter is a subtype of DatasetCalculation, capable of

performing morphological filtering – both dilation and erosion – on a

provided ClusterMap and a CHM dataset covering the affected area.

MorphologyClusterFilter was used to perform morphological opening on

the previously built ClusterMap as described in Sec. 3.2.6.

HausdorffDistance is a subtype of Operation, capable of calculating the Hausdorff

distance of clusters in two ClusterMaps. The HausdorffDistance class

was used to pair up the clusters of the ClusterMaps constructed from AHN-2

and AHN-3 CHMs as described in Sec. 3.2.7.

CentroidDistance is a subtype of Operation, capable of calculating the distance of

centroids of clusters in two ClusterMaps. The CentroidDistance class was

used to pair up the clusters of the ClusterMaps constructed from AHN-2 and

AHN-3 CHMs as described in Sec. 3.2.7.

HeightDifference is a subtype of Operation, capable of calculating the height differ-

ence of each cluster pair in two ClusterMaps as described in Sec. 3.2.8.

VolumeDifference is a subtype of Operation, capable of calculating the individual

volume difference of each cluster pair in two ClusterMaps and their aggregated

volume difference as described in Sec. 3.2.9.

Remark. The steps preceding the pairing of clusters (using either

HausdorffDistance or CentroidDistance) have to be executed twice,

38

4. Implementation

since there are two input sources (AHN-2 and AHN-3). In order to accelerate execution,

these steps of the algorthm can be carried out asynchronously, and the cluster pairing

can be initialized once both cluster maps are constructed completely. Fig. 4.2 illustrates

this parallelism as well.

Figure 4.3: UML class diagram of the AHN.Vegetation module.

39

Chapter 5

Results

5.1 Sample territories and performance

Testing of the algorithm was carried out on multiple territories of different size.

Table 5.1 contains the name and area of each territory along with performance information

for both pairing methods. All tasks were executed sequentially without any parallelization

applied on a single CPU core.

Name Area Pairing method Runtime

Single street 0.025 km2 centroid 2.17 sec
Hausdorff 125 sec

TU Delft Campus 2.143 km2 centroid 18 min 10 sec
Hausdorff 51 min 2 sec

Delft city center 8.64 km2 centroid 4 h 48 min

Table 5.1: Basic data and runtime information of the sample territories.

Remark. Increase of runtime is non-linear with the growth of territory size due to the

quadratic computational cost mentioned in Sec. 5.2.

Remark. Based on the results of testing on the Single street and the TU Delft Campus

sample territories, the centroid distance pairing method turned out to be a better solution

in computational complexity.

40

5. Results

5.2 Test results

Table 5.2 contains the results of pairing carried out by different pairing methods for

each sample territory.

Sample
territory

Pairing
method

AHN-2
clusters

AHN-3
clusters Pairs

Unpaired
AHN-2
clusters

Unpaired
AHN-3
clusters

Single street
centroid 54 59 40 14 19

Hausdorff 54 59 41 13 19
TU Delft
Campus

centroid 4 135 4 752 2 182 1 953 2 570
Hausdorff 4 135 4 752 2 251 1 884 2 550

Delft city
center

centroid 18 858 20 351 10 319 8 539 10 032

Table 5.2: Results of different pairing methods.

Remark. The number of paired and unpaired AHN-3 clusters do not add up to the total

number due to the not partially injective implementation of the Hausdorff distance pairing

method as mentioned in Sec. 3.2.7.

Figure 5.1: Height differences of paired clusters in the Single street sample territory.

41

5. Results

Table A.1 in Appendix A contains the height differences of individual cluster pairs for

the Single street sample territory. Height differences are also visualized by Fig. 5.1 and

Fig. 5.2 for the Single Street and the TU Delft Campus sample territories respectively.

Figure 5.2: Height differences of paired clusters in the TU Delft Campus sample territory.

42

5. Results

Table 5.3 contains the aggregated volume and total volume difference of both epochs

for each sample territory.

Sample territory Pairing method AHN-2 volume AHN-3 volume Difference

Single street
centroid 39 353 m3 62 626 m3 23 272 m3

Hausdorff 39 353 m3 63 075 m3 23 721 m3

TU Delft
Campus

centroid 1 473 300 m3 2 350 390 m3 877 089 m3

Hausdorff 1 473 300 m3 2 384 630 m3 911 332 m3

Delft city center centroid 5 305 280 m3 8 201 950 m3 2 896 670 m3

Table 5.3: Results of volume calculation for different epochs.

43

Chapter 6

Conclusion and future work

The goal of this research was to develop an automatized, robust algorithm for the

change detection of vegetation based on LiDAR data which is applicable for large ur-

ban areas. The algorithm works with preprocessed DEM files instead of raw point clouds

in order to decrease computational complexity. I construct canopy height models of the

DEM files which is then submitted for multiple preprocessing steps (low-pass filtering

and elimination of low points). Afterwards, the tree top candidates are collected as seed

points of clusters. The clusters are then expanded and merged, if a tree was to be cov-

ered by multiple of them. Once I finished processing the sources from both epochs, I am

equipped with two cluster maps covering the same area. The clusters of the two maps

are paired up, and unpaired clusters are secluded in both maps. Thereby I am able to de-

termine the quantity of removed and planted trees along with those that were present in

both scans. Afterwards, I calculate the height and volume differences of individual cluster

pairs, and the total volume of both cluster maps which enables the calculation of total vol-

ume change. Thus the algorithm is suitable for quantifying changes that occurred between

individual LiDAR scans.

The results have shown that the algorithm fulfills the initial expectations. The sample

territories covered parts of the city of Delft which is an urban environment with plenty

of vegetation. Delft has been exposed to major urban planning between the examined

epochs thus creating a good sample territory for detecting planted and removed trees.

Cluster construction and pairing gave satisfying representation of the location and scope

of trees in the sample territories. Cluster pairing has also provided representative data of

the actual quantifiable changes (tree height and volume).

44

6. Conclusion and future work

Future work includes the improvement of tree crown segmentation in areas with dense

vegetation. The proposed algorithm can fail the segmentation of very close tree crowns,

which then introduces further mismatching errors in the pairing phase. Canopy height

models also contain occasional nodata points due to scanning errors or faulty DTM gen-

eration. The nodata points appear in cluster maps thus distorting results. These points can

be corrected and substituted using numeric interpolation based on the surrounding points.

The algorithm is still capable of enhancement regarding execution through the paralleliza-

tion of multiple phases of the algorithm (e.g. tree crown segmentation, pairing of clusters).

Pairing methods could also be accelerated by creating indexes for the cluster maps, e.g. a

quadtree or R-tree.

The topic of change detection of vegetation in urban environment still has plenty

of potential continuation. From the point of urban planning, it would be very useful to

display quantified changes aggregated along administrative areas (cities, districts, etc.).

Information like that would help endeavors aiming the protection of the environment and

putting climate change under control.

45

Acknowledgements

This work is supported by the European Union, co-financed by the European Social

Fund (EFOP-3.6.3-VEKOP-16-2017-00001).

46

Appendix A

Height differences

The following table contains the height differences of individual cluster pairs for the

Single street sample territory.

AHN-2 cluster ID AHN-3 cluster ID Height difference

17 5 4.32131

20 11 3.30619

22 8 6.60914

24 15 4.39316

27 16 3.75112

28 18 5.39475

29 23 4.80995

33 19 0.848066

38 24 3.73956

40 25 3.80762

44 32 0.0790334

48 46 4.00462

52 45 1.81238

55 43 2.02842

69 52 1.06831

70 53 3.64725

74 59 4.87119

77 68 2.83611

47

A. Height differences

AHN-2 cluster ID AHN-3 cluster ID Height difference

79 62 3.66171

83 64 1.78966

85 70 4.95078

87 76 3.00369

89 79 3.65544

90 82 5.58029

92 77 3.80669

94 84 4.10592

97 88 2.77056

99 95 2.4275

101 96 3.52558

105 98 5.07631

107 101 2.93002

109 103 4.30752

111 104 0.168917

113 114 3.3164

116 115 3.73956

127 119 3.5365

130 128 -2.58732

132 127 4.33769

137 132 -0.872801

139 135 4.089

Table A.1: Height differences of individual pairs in the Single street sample territory.

48

Bibliograhpy

[1] A. Antonarakis, K. S. Richards, and J. Brasington. Object-based land cover clas-

sification using airborne lidar. Remote Sensing of environment, 112(6):2988–2998,

2008.

[2] A Bellakaout, M Cherkaoui, M Ettarid, and A Touzani. Automatic 3d extraction

of buildings, vegetation and roads from lidar data. International Archives of the

Photogrammetry, Remote Sensing & Spatial Information Sciences, 41, 2016.

[3] T. Butkiewicz, R. Chang, Z. Wartell, and W. Ribarsky. Visual analysis and se-

mantic exploration of urban lidar change detection. In Computer Graphics Forum,

volume 27 of number 3, pages 903–910. Wiley Online Library, 2008.

[4] Q. Chen, D. Baldocchi, P. Gong, and M. Kelly. Isolating individual trees in a sa-

vanna woodland using small footprint lidar data. Photogrammetric Engineering &

Remote Sensing, 72(8):923–932, 2006.

[5] P. Delmas. Morphological image processing. https://www.cs.auckland.

ac.nz/courses/compsci773s1c/lectures/ImageProcessing-

html/topic4.htm. Accessed: 2019-04-13.

[6] N. Efford. Morphological image processing. In Digital Image Processing: A

Practical Introduction Using Java, chapter 11, pages 271–297. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 2000. ISBN:

0201596237.

[7] R. C. Gonzalez and R. E. Woods. Morphological image processing. In Digital

Image Processing (3rd Edition), chapter 9, pages 649–710. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 2006. ISBN: 013168728X.

49

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

BIBLIOGRAHPY

[8] N. Grégoire and M. Bouillot. Hausdorff distance between convex polygons. http:

//cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/

normand/main.html. Accessed: 2019-04-13.

[9] E. Gülch. Investigations on google tango development kit for personal indoor map-

ping. studies, 1:3, 2016.

[10] J. Hyyppä, J.-P. Virtanen, A. Jaakkola, X. Yu, H. Hyyppä, and X. Liang. Feasibility

of google tango and kinect for crowdsourcing forestry information. Forests, 9(1),

2018. ISSN: 1999-4907. DOI: 10.3390/f9010006. URL: http://www.

mdpi.com/1999-4907/9/1/6.

[11] J. Hyyppa, O. Kelle, M. Lehikoinen, and M. Inkinen. A segmentation-based

method to retrieve stem volume estimates from 3-d tree height models produced by

laser scanners. IEEE Transactions on geoscience and remote sensing, 39(5):969–

975, 2001.

[12] S. Kaasalainen, A. Krooks, J. Liski, P. Raumonen, H. Kaartinen, M. Kaasalainen,

E. Puttonen, K. Anttila, and R. Mäkipää. Change detection of tree biomass with

terrestrial laser scanning and quantitative structure modelling. Remote Sensing,

6(5):3906–3922, 2014.

[13] R. Lindenbergh and P. Pietrzyk. Change detection and deformation analysis using

static and mobile laser scanning. Applied Geomatics, 7(2):65–74, 2015.

[14] G. Y. Lu and D. W. Wong. An adaptive inverse-distance weighting spatial interpo-

lation technique. Computers & geosciences, 34(9):1044–1055, 2008.

[15] J. A. McDivitt. Apollo 15 Mission Report. Technical report, NASA, Dec. 1971.

URL: https://www.hq.nasa.gov/alsj/a15/ap15mr.pdf. Section:

5.12.2 Laser Altimeter.

[16] V Meyer, S. Saatchi, J Chave, J. Dalling, S Bohlman, G. Fricker, C Robinson,

M Neumann, and S Hubbell. Detecting tropical forest biomass dynamics from re-

peated airborne lidar measurements. Biogeosciences, 10(8):5421–5438, 2013.

[17] PDOK. Besteksvoorwaarden inwinning landsdekkende dataset AHN2014-2019.

Technical report 2.0 final, Dutch National Spatial Data Infrastructure, May 2015.

URL: http://www.ahn.nl/.

50

http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/normand/main.html
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/normand/main.html
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/98/normand/main.html
https://doi.org/10.3390/f9010006
http://www.mdpi.com/1999-4907/9/1/6
http://www.mdpi.com/1999-4907/9/1/6
https://www.hq.nasa.gov/alsj/a15/ap15mr.pdf
http://www.ahn.nl/

BIBLIOGRAHPY

[18] PDOK. Kwaliteitsdocument AHN2. Technical report 1.3 final, Dutch National

Spatial Data Infrastructure, May 2013. URL: http://www.ahn.nl/.

[19] P. Raumonen, M. Kaasalainen, M. Åkerblom, S. Kaasalainen, H. Kaartinen, M.

Vastaranta, M. Holopainen, M. Disney, and P. Lewis. Fast automatic precision tree

models from terrestrial laser scanner data. Remote Sensing, 5(2):491–520, 2013.

[20] R. T. Rockafellar and R. J.-B. Wets. Set convergence. In Variational analysis.

Volume 317, chapter 4, pages 108–147. Springer Science & Business Media, 2009.

ISBN: 978-3-540-62772-2. DOI: 10.1007/978-3-642-02431-3.

[21] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data.

In Proceedings of the 1968 23rd ACM National Conference, ACM ’68, pages 517–

524, New York, NY, USA. ACM, 1968. DOI: 10.1145/800186.810616. URL:

http://doi.acm.org/10.1145/800186.810616.

[22] J.-H. Song, S.-H. Han, K. Y. Yu, and Y.-I. Kim. Assessing the possibility of land-

cover classification using lidar intensity data. International archives of photogram-

metry remote sensing and spatial information sciences, 34(3/B):259–262, 2002.

[23] L Swart. How the Up-to-date Height Model of the Netherlands (AHN) became a

massive point data cloud. NCG KNAW, 17, 2010.

[24] G. Vosselman and H.-G. Maas. Airborne and terrestrial laser scanning. CRC,

2010.

[25] L. Wasser. Create a Canopy Height Model With Lidar Data. https://www.

earthdatascience . org / courses / earth - analytics / lidar -

raster-data-r/lidar-chm-dem-dsm/. Accessed: 2019-03-22.

[26] X. Yu, J. Hyyppä, A. Kukko, M. Maltamo, and H. Kaartinen. Change detection

techniques for canopy height growth measurements using airborne laser scanner

data. Photogrammetric Engineering & Remote Sensing, 72(12):1339–1348, 2006.

51

http://www.ahn.nl/
https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.1145/800186.810616
http://doi.acm.org/10.1145/800186.810616
https://www.earthdatascience.org/courses/earth-analytics/lidar-raster-data-r/lidar-chm-dem-dsm/
https://www.earthdatascience.org/courses/earth-analytics/lidar-raster-data-r/lidar-chm-dem-dsm/
https://www.earthdatascience.org/courses/earth-analytics/lidar-raster-data-r/lidar-chm-dem-dsm/

List of Figures

2.1 The difference between DEM, DSM and DTM. 8

2.2 Multiple return of laser beams. 12

3.1 Satellite image of the study area. 15

3.2 Creation of canopy height model from DSM and DTM. 17

3.3 AHN-2 canopy height model. All height values are represented in meters. 18

3.4 AHN-3 canopy height model. 18

3.5 Low-pass filtering performed on AHN-2. 20

3.6 Low-pass filtering performed on AHN-3. 20

3.7 Elimination of low points performed on AHN-2. 21

3.8 Elimination of low points performed on AHN-3. 22

3.9 The four types of possible cluster merges. 24

3.10 Tree crown segmentation performed on AHN-2. 26

3.11 Tree crown segmentation performed on AHN-3. 26

3.12 Original image. 27

3.13 Morphological erosion. 27

3.14 Morphological dilation. 27

3.15 Morphological opening performed on AHN-2. 28

3.16 Morphological opening performed on AHN-3. 29

3.17 Detected paired and unpaired clusters. 31

4.1 UML class diagram of CloudTools’ operation model. 36

4.2 Flowchart of the algorithm. 37

4.3 UML class diagram of the AHN.Vegetation module. 39

5.1 Height differences of paired clusters in the Single street sample territory. . 41

5.2 Height differences of paired clusters in the TU Delft Campus sample ter-

ritory. 42

List of Tables

5.1 Basic data and runtime information of the sample territories. 40

5.2 Results of different pairing methods. 41

5.3 Results of volume calculation for different epochs. 43

A.1 Height differences of individual pairs in the Single street sample territory. 48

	Introduction
	Related work
	Data acquisition
	Airborne LiDAR
	Terrestrial LiDAR
	Further methods

	Data formats
	Classification of land coverage
	Change detection in point clouds
	Binary and quantifiable changes
	Change detection of vegetation

	Analysis and specification
	Dataset description
	Methodology
	Producing canopy height models
	Low-pass filtering
	Elimination of low points
	Counting and collecting local maximum points
	Construction of a cluster map - tree crown segmentation
	Morphological filtering
	Cluster pairing
	Difference of tree heights
	Difference between the volume of trees

	Implementation
	Architecture of CloudTools
	Architecture of the prototype implementation

	Results
	Sample territories and performance
	Test results

	Conclusion and future work
	Acknowledgements
	Height differences
	Bibliograhpy
	List of Figures
	List of Tables

